
The Optimal Structure of Securities under Coordination
Frictions*

Dan Luo† Ming Yang‡

June 19, 2023

Abstract

We study multi-agent security design in the presence of coordination frictions. A principal in-

tends to develop a project whose value increases with an unknown state and the level of agents’

participation. To motivate the participation of ex ante homogeneous agents, the principal of-

fers them multiple monotone securities backed by the project value. More participation results

in a higher project value and thus higher security payment to participating agents, making

participation decisions strategic complements. Miscoordination arises because agents cannot

precisely infer others’ decisions from noisy signals about the state. We identify two objects

in security design—"payoff sensitivity" and "perception of participation"—that determine the

impact of miscoordination. To mitigate the adverse impact of miscoordination, the two objects

should be matched assortatively over agents. This mechanism implies a multi-tranche secu-

rity structure in which senior-tranche holders are more robust to potential miscoordination and

participate more aggressively, helping alleviate the junior-tranche holders’ fear of miscoordi-

nation. We find that the principal’s ability to differentiate agents in security format is crucial

to whether differentiation is desirable.
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1 Introduction

Project implementation often requires the participation of multiple agents. For example, an en-
trepreneur needs to raise capital from multiple investors, a financial system relies on multiple
interconnected financial institutions and investors to operate, and a firm organizes multiple divi-
sions to work on a joint task. In such settings, each agent’s payoff is typically contingent on the
project outcome, which depends on the participation decisions of all agents.1 As a result, agents
care about others’ participation decisions, and coordination is crucial. However, coordination can
be impeded for various reasons. For instance, coordination through communication may be too
costly, especially between a large number of agents; it may take a long time to coordinate while
participation decisions are urgent; communication itself may be vague and ineffective due to dif-
ferent interpretations. As a result, the agents face strategic uncertainty between each other and
may miscoordinate in their decisions, making them reluctant to participate. Such reluctance is
self-fulfilling and self-reinforcing, making it even harder for the principal to motivate the agents to
participate and achieve efficient outcomes.

This paper studies the principal’s optimal security design in the presence of coordination fric-
tions. The principal has the flexibility to design securities and offer different securities to different
agents, which enables the study of the allocation of payoffs across states and agents, as well as their
interaction. The analysis centers on three key questions: which security format is the most effective
in addressing miscoordination, whether agents should be distinguished based on security format or
pricing, and what mechanism determines the desirability of a particular way of differentiating the
agents.

To address these questions in a unified framework, we formulate the problem in the context of
joint task, where a risk-neutral principal ("she") aims to develop a project whose value increases
in an unknown state and the participation of multiple risk-neutral agents ("he").2 The principal
offers monotone securities, backed by the project’s value, to motivate agents’ participation. In
this setting, the more agents participate, the higher the project value is, leading to higher security
payments for all agents, thereby making their participation decisions strategic complements. The
agents receive private noisy signals about the state before deciding whether to participate, resulting
in potential miscoordination due to imprecise inference of others’ decisions from their signals. As
such, we adopt the global games approach and study the principal’s multi-agent security design
problem on top of it.

1Here, we use the term "participation" in a general sense to refer to an agent’s action that contributes to the overall
outcome of the project. Depending on the context, this could refer to investing capital, exerting effort, or contributing
ideas or resources, etc.

2We will use she/her to refer to the principal and he/his to (one of) the agents throughout the paper. We do not
intentionally associate the players with particular genders.
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To analyze the impact of security design on agents’ participation, note that in the sub-game of
participation each agent adopts a cutoff strategy, participating only if his signal exceeds his cutoff.
Therefore, understanding the security design’s impact on the marginal agents, those whose signals
are equal to their cutoffs, is crucial. Two objects in security design are found to be important. The
first is a marginal agent i’s perception of participation, f i(M), which represents the probability that
mass M of agents participate from his perspective. Similar to the belief constraint in Sákovics and
Steiner (2012), the total perception of participation of all agents is fixed, i.e.,∫

i
f i(M)di = 1,

which is an important constraint on security design.3 In addition, a marginal agent with a lower
cutoff has a lower perception of participation since he expects other agents to observe lower sig-
nals and, consequently, be less likely to participate. Therefore, security design essentially alters
the distribution of perception of participation among agents. The second object is an agent’s pay-

off sensitivity to the project value, which captures how his expected payoff increases with other
agents’ participation. Since the agents’ total payoffs cannot exceed the project value, this imposes
a constraint on the total payoff sensitivity of all agents.

As a result of the complementarity in production technology, agents’ expected payoffs increase
with the expected participation of other agents, allowing the principal to economize on security
offering. We find that the benefits from the complementarity amount to the product of the percep-
tion of participation and the payoff sensitivity, summed over all agents. To maximize total benefits
while adhering to the aforementioned constraints on the total perception of participation and total
payoff sensitivity, the principal should differentiate agents in both objects and achieve an assor-
tative matching between them when designing the security. Based on this mechanism, we derive
the qualitative properties of the optimal security design. We assume that the principal can offer
a security bundle with at most N formats of securities and focus on the optimal bundle with the
fewest formats.

To understand the mechanism, we start by fixing agents’ perception of participation and deter-
mine the optimal security formats. We find that the optimal security bundle must be structured in
tranches, with agents who have a lower perception of participation receiving more senior tranches,
and agents who have the same perception of participation receiving identical tranches. This is
because the principal and the marginal agents value cash flows differently. Firstly, relative to the
marginal agents, the principal cares more (less) about the security payments when the project value
is high (low). Since any agent with a signal higher than his cutoff also participates, when the prin-

3When the agents have the same security payment, the sub-game of participation becomes a standard global game
where the players have symmetric payoffs and play the same cutoff strategy in equilibrium, so that the above constraint
reduces to the usual Laplacian belief (i.e., all marginal agents i perceives f i(M)= 1, the uniform distribution over [0,1].
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cipal makes security payments to an agent, she conditions on that the project value is overall higher
than what a marginal agent expects. Thus, the principal is willing to give the agents (as a whole) a
senior tranche and retain the junior tranche for herself, creating a tranching structure between the
principal and the agents. Secondly, marginal agents with a lower perception of participation attach
more weights to security payments at low project values since they observe lower signals and view
low project values as more likely. To optimize security offerings, the principal should allocate
cash flows at specific project values to agents who value them the most, leading to a tranching
structure within agents based on their perception of participation. Since the agents with the same
perception of participation value cash flows in the same way, the principal does not benefit from
differentiating them and can offer them an identical tranche.

Given that the tranching structure is based on agents’ perception of participation, we next
study the extent to which agents should be differentiated in this dimension. We find that a finer
differentiation is always preferred, and the optimal security bundle should contain the maximum
number of tranches. Firstly, senior-tranche holders benefit less from others’ participation since
they have lower payoff sensitivity overall than junior-tranche holders. Secondly, since the total
perception of participation is fixed, a decrease in senior-tranche holders’ perception of participation
must be accompanied by an increase in junior-tranche holders’ perception of the same amount. As
such, an uneven allocation of perception of participation benefits junior-tranche holders more than
it harms senior-tranche holders, allowing the principal to reduce the aggregate security offering.
In other words, this differentiation creates a beneficial assortative matching within a tranching
structure. To sum up, the principal should use a multi-tranche structure to differentiate agents such
that senior-tranche holders participate more aggressively, which alleviates junior-tranche holders’
fear of miscoordination.

Our characterization of the optimal security design provides several new insights into contract
design in multi-agent settings. First, offering multiple tranches instead of a single one can be
motivated purely by coordination frictions. As a comparison, in a scenario where agents can di-
rectly observe the state and coordinate perfectly under the principal’s recommendation, offering all
agents an identical security is optimal. In the presence of coordination frictions, the optimal secu-
rity design differentiates homogeneous agents to achieve assortative matching, rather than catering
to heterogeneous agents. Therefore, we justify the use of multiple tranches without resorting to
any clientele effect.

Second, the desirability of differentiating agents depends on whether it allows for assortative
matching between perception of participation and payoff sensitivity. Differentiation is desirable in
the model because the principal can use flexible security formats to control the distribution of the
two objects among agents. However, when security formats are restricted, for example, when the
principal can differentiate agents only in security pricing but not in security formats, differentiation
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is not desirable because the restriction prevents the beneficial "assortative matching." This point
contrasts our paper with existing literature on contracting with externalities (Segal, 2003; Winter,
2004; Halac et al., 2020), where the principal always prefers to differentiate agents irrespective
of their payoff structures. To the best of our knowledge, our paper is the first in the literature to
highlight the role of differentiating agents’ payoff structures in contracting with externalities.

Third, the optimal security design induces differentiation in agents’ perception of participation
but may not take it to extremes. That means, under the optimal design, marginal agents may still
face substantial uncertainty regarding the decisions of agents holding a different tranche. This
point manifests that differentiation in our model is not intended to eliminate strategic uncertainty
as in the literature of contracting with externalities.

The rest of this paper is organized as follows. Section 1 reviews the related literature. Section
2 illustrates the main insight of our results with a simplified example. Section 3 sets up the formal
model. Section 4 conducts the equilibrium analysis for the sub-game of participation for any given
security design. Section 5 studies the optimal security design based on the equilibrium analysis
in Section 4. Section 6 is devoted to discussions and extensions. All proofs are relegated to the
Appendix unless otherwise specified.

Related literature

Our paper is closely related to the large literature of the global games (Carlsson and van Damme,
1993; Morris and Shin, 1998, 2004; Frankel et al., 2003). Unlike most of the existing literature,
we focus on multi-agent security design that shapes the global game to be played. The work that is
closest to ours is Sákovics and Steiner (2012), who study a principal’s optimal subsidies that attain
a given likelihood of successful coordination at minimal cost in a coordination game with het-
erogeneous agents. Their exercise can be interpreted in our framework as holding agents’ payoff
sensitivity fixed and altering their perception of participation through subsidies. Our paper differs
from theirs in two important ways. First, we start with homogeneous agents and allow differentia-
tion of agents to emerge endogenously in equilibrium. In our setup, the principal’s optimal design
intentionally differentiates homogeneous agents to mitigate the adverse impact of miscoordination,
rather than merely responding to their exogenous heterogeneity. Second, we address optimal secu-
rity design in a general framework, where the principal can flexibly design securities subject to the
budget constraint and potentially offer different securities to different agents. This flexibility leads
to sharp predictions regarding the optimal security formats and allows the discussion on whether
and how agents should be differentiated.

Our paper fits within the literature on contracting with externalities by examining contract de-
sign in coordination games. Prior studies by Segal (2003), Winter (2004), and Halac et al. (2020)
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capture strategic risk by focusing the worst equilibrium of a coordination game with perfect infor-
mation and show that extreme differentiation of agents’ payoffs is always preferred to eliminate
strategic uncertainty. 45 Similarly, Halac et al. (2021) focus on the worst equilibrium but allow for
rank uncertainty to create mutual assurance among agents. They find that differentiation of agents’
payoff is not preferred if agents are ex ante homogeneous. In contrast, our paper introduces a
state and noisy signals about the state to pin down a unique equilibrium of the coordination game,
where agents provide mutual assurance through perception of participation. The principal’s con-
tract design determines both each agent’s perception of participation and payoff sensitivity, and
the matching between these two objects over agents is crucial in the design. Our paper’s novel
contribution is to show that the desirability of differentiation of agents depends on the flexibility of
the payoff structures that the principal can offer to agents. This finding highlights the role of payoff
structures in contract design to mitigate coordination problems, and to our knowledge, is the first
study to do so. Unlike the existing literature of contracting with externalities and ours, Luo (2023)
studies the implication for contracting of strategic communication in a coordination game instead
of strategic risk. There whether to differentiate agents depends on whether to induce persuasion
between them.

Showing the optimality of multi-tranching structures, our paper is closely related to the litera-
ture of security design. Tranching is an ubiquitous phenomenon in finance and has been rational-
ized from different angles in the literature. One strand of research considers security design when
the seller is more informed (Leland and Pyle, 1977; Myers and Majluf, 1984; Boot and Thakor,
1993; Nachman and Noe, 1994; DeMarzo and Duffie, 1999; DeMarzo, 2005; Biais and Mariotti,
2005). DeMarzo and Duffie (1999) and Biais and Mariotti (2005) show that debt (as a single se-
nior tranche) is optimal among monotone securities if the security is designed before the seller
receives private information and chooses the level of retention. DeMarzo (2005) rationalizes the
common practice of pooling and tranching. Another strand of research focuses on the case of more
informed buyers (Gorton and Pennacchi, 1990; Demarzo et al., 2005; Axelson, 2007; Dang et al.,
2015; Yang, 2020), which suggest that debt is the least information-sensitive security and can best
protect the seller from buyers’ exogenous or endogenously acquired private information. In our pa-
per, agents privately observe signals about the state, and a tranching structure is used to reduce their
information rent as well. While existing literature suggests offering a single senior tranche to all
investors, Winton (1995) and Friewald et al. (2016) rationalize multiple tranches based on different

4To see this, consider a game with two agents. To ensure that neither agents participating is not an equilibrium, the
principal should offer agent 1 a sufficiently high payoff so that he wants to participate regardless of agent 2’s decision.
Then the principal can offer agent 2 a lower payoff because he knows that agent 1 will surely participate. In this
example, agent 1 provides assurance to agent 2 and assumes no assurance from him.

5The optimality of such extreme differentiation is not sensitive to the specific payoff structure, although these
papers obtain it based on simple ones..
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mechanisms. Winton (1995) considers multiple investors in the classical costly state verification
framework and shows that multiple tranches can economize on verification cost by allowing dif-
ferent investors to focus on the verification of different subsets of states. Friewald et al. (2016)
indicate that multiple tranches could be favorable due to a post-sale clientele effect, where buyers
may have heterogeneous holding costs, and multiple tranches can cater to their varying needs for
liquidity. In contrast, our paper suggests that multiple tranches be created to deliberately differen-
tiate ex ante homogeneous agents in the presence of coordination frictions, which is the first in the
literature to our knowledge and has interesting implications for security design.

2 An Illustrative Example

This section presents an example to illustrate the paper’s main insights. Specifically, we adapt the
debt rollover model of Morris and Shin (2004) to our study of security design.

2.1 Setup of the Example

There are three dates, t = 0,1,2. All players do not discount future cash flows. A firm (i.e., the
principal) raises $1 from each of two banks (i.e., the agents) to develop a project at t = 0, and the
project outcome is realized at t = 2. At t = 0, the firm enters into a loan contract with each bank,
which specifies that Bank i lends $1 to the firm at t = 0 in exchange for a debt payment at t = 2. At
t = 1, each bank receives private information and can decide whether to terminate the loan contract
or not. Termination means forgoing the debt payment and getting the $1 investment back from the
firm immediately. We say a bank participates if he decides not to terminate.

At t = 2, the project either succeeds or fails. The firm value will be C > 0 if the project fails
and sufficiently high if it succeeds. The debt payment to Bank i is state-contingent and specified
by the debt security (ci,di), where ci is the payment upon failure and di the payment upon success,
respectively. We refer to di − ci as Bank i’s payoff sensitivity. The debt security (ci,di) can be
interpreted as follows. When the project fails, the firm is worth only the liquidation value of
its tangible assets, which is C, and Bank i only receives the tangible assets assigned to him as
collateral, which is ci. When the project succeeds, the firm value is so high relative to its liquidation
value C that the firm is willing to pay the debt face value di to avoid forced liquidation. Due to the
resource constraint, the total amount of collateral cannot exceed the total value of tangible assets,
i.e., c1 + c2 ≤ C. We assume C < 1, i.e., the firm does not have sufficient tangible assets to fully
collateralize any loan.

The project’s success probability depends on an exogenous state θ ∈ R and the number of
participating banks . In particular, in state θ , the success probability equals P1(θ) if both banks
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participate and P0(θ) otherwise. Both P0(θ) and P1(θ) are continuous and increasing in θ .We
assume P1(θ)> P0(θ). That is, the project is more likely to succeed when more banks participate.
This assumption implies complementarity between the banks’ participation decisions. We also
assume the existence of dominance regions so that we can apply the global game approach:P0(θ)

and P1(θ) go to 1 as θ →+∞ and 0 as θ →−∞.
The firm and the banks share a common prior of θ at t = 0. To simplify the illustration,

we assume that the common prior is the improper distribution over R. At t = 1, before deciding
whether to participate, each Bank i observes hisa private signal xi = θ +σεi, where noise εi follows
cumulative distribution function Φ(·) (with probability density function φ(·)) and is independent
of the state θ and noise ε j for j ̸= i, and σ is the magnitude of the noise. Note that when σ = 0,
the banks can make decisions fully contingent on θ and the incomplete information participation
game at t = 1 reduces to a continuum of complete information participation games indexed by
θ . To focus on the implications of coordination frictions for security design, we perturb these
complete information games by letting σ be strictly positive but close to zero. This allows us to
highlight strategic uncertainty to sharpen the insight and the intuition of our results.

2.2 Banks’ Participation Decisions

Since the banks’ initial investment is refundable at t = 1 and they do not discount the cash flows,
they always enter into the loan agreements at t = 0. We thus only need to consider the banks’
participation decisions at t = 1. As is well understood in the global games literature, for sufficiently
small σ , the game has a unique equilibrium in which the two banks play switching strategies. That
is, Bank i participates if and only if his private signal xi > x̂i for some cutoff x̂i.6 We say that
Bank i is marginal if he observes a signal equal to his cutoff x̂i. When Bank i is marginal, as an
equilibrium condition, he must be indifferent to participation or termination, i.e.,

ci +(di − ci)pi = 1, (1)

where
pi =

∫
∞

−∞

{
P0(θ)+ [P1(θ)−P0(θ)]

[
1−Φ

(
x̂ j −θ

σ

)]}
1
σ

φ

(
x̂i −θ

σ

)
dθ (2)

represents the project’s success probability perceived by the marginal Bank i conditional on his
participation. In particular, 1

σ
φ

(
x̂i−θ

σ

)
is the probability density of his posterior belief of θ , and

1−Φ

(
x̂ j−θ

σ

)
is the probability that Bank j participates when the state is θ .

6Here we assume that Bank i does not participate if he observes xi = x̂i. This tie-breaking rule is without loss of
generality, as observing xi = x̂i is a zero-probability event.
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For small σ , pi has an intuitive expression

pi = P0(x̂i)+ f
(

x̂ j − x̂i

σ

)
· [P1(x̂i)−P0(x̂i)]+O(σ), (3)

where

f
(

x̂ j − x̂i

σ

)
=
∫ +∞

θ=−∞

[
1−Φ

(
x̂ j −θ

σ

)]
d
[

1−Φ

(
x̂i −θ

σ

)]
= 1−

∫ 1

0
Φ

(
Φ

−1(1− y)+
x̂ j − x̂i

σ

)
dy. (4)

From the marginal Bank i’s perspective, θ is almost equal to x̂i. If Bank j participates (terminates),
the project’s success probability is almost P1(x̂i) (P0(x̂i)). In particular, f

(
x̂ j−x̂i

σ

)
represents the

probability that Bank j participates from the marginal Bank i’s perspective. Hence, Equation (3)
reads that, from the marginal Bank i’s perspective, the project’s success probability equals the
success probability without Bank j’s participation P0(x̂i) plus the participation probability of Bank
j (i.e., f

(
x̂ j−x̂i

σ

)
) multiplied by the resultant increase in success probability (i.e., P1(x̂i)−P0(x̂i)).

We refer to f
(

x̂ j−x̂i
σ

)
as Bank i’s perception of participation, which is a function of ∆i j ≡(

x̂ j − x̂i
)
/σ , the relative distance between Bank j and i’s cutoffs. Note that by definition, ∆i j =

−∆ ji and f (∆) ∈ [0,1] for any ∆ ∈ R. The following lemma presents two important properties of
this function.

Lemma 1. The following two properties of f (·) always hold.

• Bank i’s perception of participation is strictly decreasing in ∆i j.

• The sum of the two banks’ perception of participation is equal to 1.

The first property immediately follows

d f (∆)
d∆

=−
∫ 1

0
φ
(
Φ

−1(1− y)+∆
)

dy < 0. (5)

Intuitively, the higher Bank j’s cutoff is, the less likely that Bank j will participate from a marginal
Bank i’s perspective. The second property follows

f (∆12)+ f (∆21) = 1. (6)
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and is implied by the Bayes’ rule under the improper prior.7 Note that this property follows the
same logic of the usual Laplacian belief in the global game models and nests it as a special case
with homogeneous players. In that case, the two banks’ cutoffs coincide, i.e., ∆12 = 0, so that upon
observing the cutoff signals, each bank believes that the other bank participates with probability
0.5. Like in Sákovics and Steiner (2012), this property serves as a budget constraint for security
design.

2.3 Benefits from Differentiation

We show that the firm is strictly better off by offering banks different securities than identical ones.
We compare two sets of securities. The benchmark one is the identical securities (c,d) to both
banks. Then they will choose the same cutoff, say x̂. Since debt cannot be fully collateralized, we
have c < 1 < d. The alternative one is (c1,d1) = (c+α,d1) and (c2,d2) = (c−α,d2), where the
face values d1 and d2 are chosen such that x̂1 = x̂−∆σ and x̂2 = x̂.

Two points regarding the benchmark and the alternative are in order. First, for small σ , they
bring the firm almost the same amount of capital in all states because x̂1 and x̂2 are almost equal to
x̂. Second, they take up the same amount of total collateral, which is 2c. Hence, the firm essentially
prefers the one with the lower total face value. In the rest of Section Section 2, we fix c and x̂, and
index the alternative set of debt securities by (α,∆).

Proposition 1. There exists strictly positive α and ∆, such that the corresponding total face value

d1 +d2 is strictly lower than 2d.

This proposition confirms that rather than offer the two banks identical debt securities, the firm
would strictly prefer to assign more collateral to one bank so that this bank has a slightly lower
cutoff in equilibrium and thus lower perception of participation upon observing his cutoff. We
next explain why and how this differentiation reduces the total face value.

7

f (∆12)+ f (∆21)

=
∫

∞

−∞

[
1−Φ

(
x̂2 −θ

σ

)]
d
[

1−Φ

(
x̂1 −θ

σ

)]
+
∫

∞

−∞

[
1−Φ

(
x̂1 −θ

σ

)]
d
[

1−Φ

(
x̂2 −θ

σ

)]
=
∫

∞

−∞

d
[

1−Φ

(
x̂2 −θ

σ

)][
1−Φ

(
x̂1 −θ

σ

)]
= 1.
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2.4 Intuitive Derivation

To understand how the total face value d1 + d2 varies with (α,∆), plugging (c+α,d1) and (c−
α,d2) into Equation (1) and Equation (3), i.e.,{

c+α +(d1 − c−α)p1(∆) = 1
c−α +(d2 − c+α)p2(∆) = 1

, (7)

where {
p1(∆) = P0(x̂)+ [P1(x̂)−P0(x̂)] · f (∆)+O(σ)

p2(∆) = P0(x̂)+ [P1(x̂)−P0(x̂)] · f (−∆)+O(σ)
. (8)

The firm’s objective is to reduce d1 +d2 subject to the two constraints in Equation (7).
Combining the two indifference conditions in Equation (7) with Equation (8) plugged in, we

obtain a combined indifference condition as follows.

2 = 2c+[P0(x̂)+ [P1(x̂)−P0(x̂)] · f (0)] · (d1 +d2 −2c)︸ ︷︷ ︸
the banks’ aggregate expected payoff without differentiation

+[P1(x̂)−P0(x̂)] · [(d1 − c−α) · ( f (∆)− f (0))+(d2 − c+α) · ( f (−∆)− f (0))]︸ ︷︷ ︸
the banks’ additional aggregate expected payoff due to differentiation

+O(σ).

(9)

The left-hand side of Equation (9) represents the sum of the two banks’ expected payoff upon
observing their respective cutoffs, which is 2. The first term in the right-hand side is the two
banks’ aggregate expected payoff if they have the same perception of participation (i.e., f (0)),
which is determined by the aggregate debt (2c,d1 +d2). The second term refers to their additional
aggregate expected payoff due to the differentiation in their perception of participation.

Fix an α > 0 and regard d1 and d2 as functions of ∆. Consider a small deviation of ∆ from
0. The first order effect of adjusting ∆ on the banks’ additional aggregate expected payoff due to
differentiation is captured by

(d1 (0)− c−α) · f (∆)+(d2 (0)− c+α) · f (−∆) , (10)

which is the sum of the product of payoff sensitivity and perception of participation over the two
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banks.8 By Equation (9), reducing the total face value d1 + d2 amounts to increasing this sum of
products subject to Equation (6), the “budget constraint” on the banks’ perception of participation.
Hence, the firm should allocate more (less) perception of participation to the bank with higher
(lower) payoff sensitivity. When ∆ = 0, the two banks have exactly the same cutoff. Since α > 0,
Bank 1 receives more collateral than Bank 2 and thus due to the indifference condition, must have
a lower face value, i.e., d1 (0) < d2 (0). This implies that Bank 1 has a lower payoff sensitivity ,
i.e.,

d1 (0)− (c+α)< d2 (0)− (c−α). (11)

Recall that f (∆) is decreasing in ∆. Therefore, a positive pair (α,∆) is desirable to the firm, as it
differentiates the banks in both payoff sensitivity and perception of participation and meanwhile
induces a desirable “assortative matching” between the two objects.

Moreover, the optimal debt securities should concentrate all collateral on one bank, i.e., c1 =C

and c2 = 0. Two observations lead to this result. First, when ∆ = 0, the second term in the right-
hand side of Equation (9) vanishes and the aggregate constraint implies that d1 (0)+ d2 (0) does
not depend on α . This is because when the two banks have a common cutoff, they perceive the
same success probability upon observing their cutoff signals. Second, concentrating all collateral
on one bank polarizes the two banks’ payoff sensitivities (see Equation (11)), maximizing the
(desirable) impact of differentiation in perception of participation (i.e., increasing ∆ from 0) on
Equation (10). Concentrating all collateral on one bank, say, Bank 1, implies a tranching structure
in which the senior tranche holder (i.e., Bank 1) has both the lower payoff sensitivity and the
lower perception of participation. We will show that this pattern of assortative matching and
the resultant tranching structure remain optimal in our general setup with multiple investors and
general production technology.

2.5 Suboptimality of Differentiation under Collinearity Constraint

Although differentiation is crucial to the assortative matching mechanism, it is not beneficial per se.
To illustrate this point, we examine a case with practical relevance. In some settings, for example
syndicated loans, the firm usually offers identical securities to banks and can differentiate them
only through upfront fees. This amounts to imposing a collinearity constraint on banks’ payoffs,
i.e., c2/c1 = d2/d1. If banks are differentiated, without loss of generality, suppose c1 > c2. On

8The banks’ additional aggregate expected payoff due to differentiation is proportional positively to

(d1 (∆)− c−α) · ( f (∆)− f (0))+(d2 (∆)− c+α) · ( f (−∆)− f (0))
=(d1 (0)− c−α) · f (∆)+(d2 (0)− c+α) · f (−∆)− f (0) · (d1 (0)+d2 (0)−2c)+o(∆)

up to a scale factor P1(x̂)−P0(x̂), which is a strictly positive constant invariant to the choice of (α,∆).
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the one hand, Bank 1 has an unambiguously better offer than Bank 2, so Bank 1 has the lower
cutoff and thus the lower perception of participation. On the other hand, the collinearity constraint
implies d1 − c1 > d2 − c2, so Bank 1 also has a higher payoff sensitivity than Bank 2. In this
case, differentiation always leads to negative assortative matching between payoff sensitivity and
perception of participation, which is undesirable.

This case manifests that whether differentiation is preferable depends on whether agents’ pay-
off structures can be differentiated in certain ways. This point helps contrast our paper to the
existing literature of contracting with externalities (Segal, 2003; Winter, 2004; Halac et al., 2020),
where differentiation is preferable irrespective of agents’ payoff structures. In these models, the
principal designs contracts that determine the payoffs of a complete information coordination game
played by the agents, which naturally admits multiple equilibria. To capture the “strategic risk” in
a complete information game, these models require the principal to evaluate a contract according
to the worst equilibrium outcome of the resultant game. This combination of equilibrium selec-
tion and the complete information setting prohibits agents from providing assurance in a mutual
way,9 so that extreme differentiation of agents’ payoffs to eliminate the “strategic risk” is always
preferable. In contrast, the global game approach allows fine-tuning of strategic risk perceived
by agents, which is characterized by f (∆) and can be fine tuned by the security design through
adjusting ∆. Whether differentiation is preferable depends on how it affects the matching between
payoff sensitivity and perception of participation.

3 The Formal Model

This section sets up the formal model with multiple agents and general production technologies.
We formalize it as a joint task problem with one principal (she) and a continuum of agents (he) of
unit mass indexed by i ∈ [0,1].10 The principal has a project that requires the agents’ participation.
She offers a (potentially different) security to each agent who then decides whether to participate
in the project. The output of the project depends (stochastically) on the mass of participating
agents as well as an exogenous fundamental state. Each agent’s opportunity cost of participation
is normalized to 1. Both the principal and the agents are risk-neutral and do not discount the future
cash flows. In the context of our illustrative example, the firm and the banks are the principal and
the agents, respectively. Accordingly, the mass of the participating agents can be interpreted as the
amount of capital invested in the project. We show that our qualitative results and the assortative
matching mechanism highlighted in the illustrative example remain valid in this general setup.

9Halac et al. (2021) allow mutual assurance among agents by introducing incomplete information on agents’ pay-
offs.

10We will use she/her to refer to the principal and he/his to the agents throughout the article. We do not intentionally
associate the players with particular genders.
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3.1 The Production Technology

Again, let θ ∈ R denote the exogenous fundamental state. The principal and the agents share
a common prior of θ , characterized by a cumulative distribution function (c.d.f.) H(θ) and the
corresponding probability density function (p.d.f.) h(θ). We assumes that h(θ) is continuous,
bounded, and fully supported on (−∞,+∞). Given the value of θ and the mass of participating
agents K, the project value z follows a c.d.f. G(z;θ ,K), which has a p.d.f. g(z;θ ,K). We assume
that the project value z is non-negative. We make the following assumptions about g(z;θ ,K).

Assumption 1.
1. The expected project value conditional on θ and K is finite, i.e.,

E [z|θ ,K]≡
∫ +∞

0
zg(z;θ ,K)dz <+∞.

2. The expected project value conditional on K is finite, i.e.,

E [z|K]≡
∫

∞

−∞

E [z|θ ,K]h(θ)dθ <+∞.

3. If (θ1,K1)≥ (θ2,K2) and (θ1,K1) ̸= (θ2,K2), then g(z;θ1,K1)/g(z;θ2,K2) is strictly increas-

ing in z.

4. As a function of z, the p.d.f. g(z;θ ,K) has full support over [0,+∞).

The first two conditions of Assumption 1 ensure that the principal-agent problem is well de-
fined. The third condition states that the p.d.f. g(z;θ ,K) satisfies the strict monotone likelihood
ratio property (SMLRP). The higher the fundamental state and the participation of agents, the more
likely the project will have a higher value. As an immediate implication of this assumption, the
expected project value is strictly increasing in θ and K, i.e.,

E [z|θ1,K1]> E [z|θ2,K2]

if (θ1,K1)≥ (θ2,K2) and (θ1,K1) ̸= (θ2,K2).
The fourth condition means that the c.d.f. G(z;θ ,K) is strictly increasing in z and G(0;θ ,K) =

0. Hence, the project value is positive almost surely. It is consistent that in practices, there are
always some assets left, even if a project fails or a firm goes to bankruptcy.

To streamline the analysis, we assume that g(z;θ ,K) takes the form of generalized regime
change, i.e.,

g(z;θ ,K) =

{
g0 (z;θ ,K) , K < λ (θ)

g1 (z;θ ,K) , K ≥ λ (θ)
,
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where λ (θ) is weakly decreasing in θ and g0 (z;θ ,K) and g1 (z;θ ,K) are Lipschitz continuous as
follows.11

Assumption 2. Let Ei[·|θ ,K] denote the expectation under p.d.f. gi (z;θ ,K) for i = 0,1. There

exist an R > 0, such that

|Ei[z|θ ,K1]−Ei[z|θ ,K2]| ≤ |K1 −K2|

and

|Ei [z|θ1,K]−Ei [z|θ2,K]|< R |θ1 −θ2|

for all θ1, θ2, K1 and K2.

The Lipschitz continuity implies that a group of agents’ participation does not generate positive
surplus unless it triggers regime change. This assumption helps manifest the implication of the
coordination friction for security design. It is worth noting that our main results regarding security
design do not require this assumption. In Section 6.3, we extend the model to show that our
main results still hold under more general production technologies. The complication there is that
the principal may want to differentiate agents due to the production technology per se, but the
coordination friction gives her further incentive to do so.

3.2 Contracting

The principal can choose a subset of agents and make a take-it-or-leave-it offer to each of them.
An offer is a security that specifies the payment to an agent if he participates. As standard in
the literature of contracting with externalities (Segal, 2003; Winter, 2004; Halac et al., 2020), we
assume that the principal can rely on only bilateral contracts. That is, the payment to an agent
does not depend on other agents’ participation decisions except insofar as those decisions affect
the project value. We motivate this assumption for two reasons. First, in financial contracting,
the asset pledged to an investor is often the collateral assigned to him. It is unusual to make the
amount of collateral contingent on other investors’ decisions. Second, it is often difficult to verify
others’ participation in practice. We further assume that the project value z is verifiable but the
fundamental state θ is not. Hence, the contract offered to each agent i is a security si[z] backed by
the project value z, and the sum of the security payments to all agents should not exceed the project
value. Let I denote the set of agents who receive offers. Each agent in I either participates in the
project at the opportunity cost of 1 or rejects. Throughout the paper, unless otherwise specified,
“the agents” refer to those in I.12 The principal’s payoff equals the project value minus the total

11In Subsection 6.3, we show that our main results hold with more general production technology.
12It is without loss of generality to allow the principal to select a subset of agents. If the principal is required to

make offers to all the agents, she can always offer some of them undesirable securities that will be declined for sure
(e.g., securities with zero payment).
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payment to the participating agents.
We assume that the principal can offer no more than N ≥ 1 types of securities. 13 Suppose

that the k-th type security sk[·] is offered to a measure Qk of agents. We refer to these agents as
Type-k agents. Define Sk[·]≡ Qksk[·] to represent the aggregate security offered to Type-k agents.
Then, {(Sk,Qk)}n

k=1 represents the security bundle designed by the principal.14. We impose the
following feasibility constraints on the security design.

Assumption 3. The securities should satisfy the following conditions:

1. (Budget Constraint) ∑
n
k=1 Sk[z]≤ z.

2. (Nonnegativity and Monotonicity) For any Type-k, Sk[z] is nonnegative and weakly increas-

ing in z.

3. (Lipschitz Continuity) For any Type-k, Sk[z] is Lipschitz continuous in z.

4. (Nontriviality) For any Type-k, there exists a zk > 0, such that sk[z]> 1 for all z > zk.

The first condition requires that the total payment to agents does not exceed the project value.
This budget constraint ensures that the principal can always fulfill her financial commitment to
the agents. The second condition requires the securities to be nonnegative, since the agents are
protected by the limited liability. It also imposes the monotonicity constraint on the securities,
which is a usual assumption in the literature and well micro-founded by the “side loan” argument
as in Innes (1990). The monotonicity constraint together with the SMLRP of g(z;θ ,K) implies
the strict monotonicity of the expected payment in θ and K, i.e.,

E [Sk[z]|θ1,K1]> E [Sk[z]|θ2,K2]

if (θ1,K1)≥ (θ2,K2) and (θ1,K1) ̸= (θ2,K2).
The third condition imposes the Lipschitz continuity of the security payment in the project

value. The Lipschitz continuity can be implied by the dual monotonicity constraint usually as-
sumed in the security design literature and thus is a weaker condition.15 The fourth condition
requires that the security payment sk[z] should not be uniformly below 1, the opportunity cost of
the agents. Otherwise, the Type-k agents will always reject the offer and thus it is equivalent to
removing these agents from I.

Finally, define
TF [z] = min{z,F}

13Although N is fixed as a parameter, it is allowed to take any positive integer value.
14Since agents are homogeneous when the security bundle is offered, how different securities are allocated among

agents does not matter to the principal. She can offer each agent a lottery, the outcome of which specifies the security
for that agent.

15The dual monotonicity constraint requires that the residual cash flow received by the principal is also weakly
increasing, i.e., z−∑

n
k=1 Sk[z] is weakly increasing in z.
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i.e., a senior tranche with face value F . For 0 < F1 < F2, we call TF2 −TF1 a junior tranche relative
to TF1 .

Remark 1. It is without loss of generality to assume that the principal offers only one security to an
agent in our setup. In Section 6.4, we show that if the principal is restricted to bilateral contracts
and subject to the budget constraint, it is suboptimal for her to offer more than one security to an
agent.

3.3 The Timeline and Information

The model has three dates. At date 0, the principal offers a security bundle to a subset of agents.
At date 1, nature draws a value of θ , and each agent i observes a noisy signal of θ , xi = θ +σε i.

As in Section 2, εi follows cumulative distribution function Φ(·) (with probability density function
φ(·)) and is independent of the state θ and noise ε j for j ̸= i, and σ captures the magnitude of the
noise. Upon observing his signal xi, agent i decides whether to participate in the project.

At date 2, the project value is realized. Participating agents receive their respective security
payments, and the principal receives the residual value of the project.

We assume that p.d.f. φ is continuous and fully supported on (−∞,+∞).16 We also require φ

to satisfy the strict monotone likelihood ratio property (SMLRP), i.e., for any a> 0, φ(ε)/φ(ε+a)

is strictly increasing in ε .

3.4 Security Design under Coordination Frictions

Agents’ decisions are strategic complements in this game because each agent’s security payment
weakly increases in the project value, which in turn strictly increases in other agents’ participa-
tion. As a result, an agent’s payoff of participating weakly increases in the participation of others.
This creates motives for an agent to coordinate his decision with others at date 1. However, since
agents only observe noisy signals, they know neither the state nor the mass of participating agents
exactly. The subgame at date 1 is thus a coordination game with incomplete information, which is
essentially a global game with agents’ (potentially heterogeneous) payoffs designed by the princi-
pal at date 0. As is standard in the global game literature (Frankel et al., 2003), we introduce the
following technical assumption about the production technology to ensure there exists a unique
equilibrium of the subgame.

Assumption 4. limθ→−∞E [z|θ ,1] = 0; and for any ẑ > 0, limθ→∞G(ẑ;θ ,0) = 0.

16We make this full support assumption for technical convenience. Under certain conditions, our main results hold
for bounded support as well.

16



This assumption requires that the project’s expected value vanishes when the fundamental state
is sufficiently weak, even though all agents participate; and that the project’s value can be arbitrarily
large when the fundamental state is sufficiently strong, even though no agent participates. As an
implication, for any given finite-type security bundle, the subgame at date 1 has dominance regions
and hence the contagion argument of the global game approach works. Lemma Lemma 2 below
formalizes this implication.

Lemma 2. There exists a θ and θ such that for all K ≥ 0, E [sk[z]|θ ,K]− 1 < 0 for θ ≤ θ and

E [sk[z]|θ ,K]−1 > 0 for θ ≥ θ .

Assumption 4 is not a stringent one, as it allows E [z|θ ,1] and G(ẑ;θ ,0) to go to 0 arbitrarily
slowly. It is satisfied by many popular probability distributions on R+, such as the lognormal distri-
butions lnz ∼ N(θ +K,σ2) and the exponential distribution with rate parameter e−(θ+K). It nicely
ensures the uniqueness of the equilibrium but otherwise does not affect our results qualitatively.

As standard in the global game literature, we study the case in which σ is strictly positive
but close to zero. This allows us to focus on the strategic uncertainty, which gives rise to the
miscoordination risk, rather than the fundamental uncertainty about θ . In particular, we address the
following two questions. First, what security format should be used in the presence of coordination
frictions? This question is central to the literature of security design. Second, should the agents
be differentiated, and if so, how? This question is central to the literature of contracting with
externalities. To rule out the case of trivial differentiation without generating extra benefit to the
principal, we focus on the qualitative properties of optimal security bundles with the fewest types
of securities.

4 The Equilibrium Following Any Security Offering

We solve the security design problem by backward induction. This section derives the unique
equilibrium of the subgame at date 1 for any security bundle. The next section studies the optimal
design of securities based on the equilibrium analysis in this section.

4.1 Intuitive Derivation

Suppose that a bundle of n types of securities is offered in date 0. Consider a symmetric equilibrium
in which for each type k in {1,2, . . . ,n}, all Type-k agents play a switching strategy characterized
by a cutoff x̂σ

k .17 That is, each Type-k agent i participates if and only if he observes xi ≥ x̂σ
k .

17As is well known in the global games literature, it is without loss of generality to focus on symmetric equilibria
with switching strategies when the noise is small.
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Let mσ
k (θ) be the probability that a Type-k agent participates if the state is θ . Then

mσ
k (θ) = Pr[xi ≥ x̂σ

k |θ ] = 1−Φ

(
x̂σ

k −θ

σ

)
. (12)

As is usual in models with a continuum of players, we adopt the law of large numbers convention18

so that the mass of the participating agents is

Mσ (θ)≡
n

∑
k=1

Qkmσ
k (θ) =

n

∑
k=1

Qk −
n

∑
k=1

QkΦ

(
x̂σ

k −θ

σ

)
, (13)

which is strictly increasing in θ . As before, we refer to an agent as marginal if he observes his
cutoff signal. A marginal Type-k agent must break even in expectation, so

∫
∞

−∞

[∫
∞

0
(sk[z]−1)g(z;θ ,Mσ (θ))dz

]
1
σ

φ

(
x̂σ

k −θ

σ

)
h(θ)dθ = 0. (14)

It is worth noting that the posterior probability of θ contains two sources of information: one is
the prior h(θ), and the other is the agent’s private signal xi = x̂σ

k .
For small σ , the private signal is sufficiently accurate relative to the prior information. We can

thus simplify a marginal agent’s breakeven condition to

∫
∞

−∞

[∫
∞

0
(sk[z]−1)g(z; x̂σ

k ,M
σ (θ))dz

]
1
σ

φ

(
x̂σ

k −θ

σ

)
dθ = O(σ).

While the fundamental uncertainty (about θ ) almost vanishes, the strategic uncertainty (regarding
other agents’ participation) remains substantial, because Mσ (θ) becomes extremely sensitive to θ

around the cutoff. In particular, from a marginal Type-k agent’s perspective, θ is highly possible
to be in an O(σ)-neighborhood of x̂σ

k , where mσ
k (θ), the probability that other Type-k agents

participate, ranges from almost 0 to almost 1, making Mσ (θ),the mass of participating agents,
vary by almost Qk in the O(σ)-neighborhood of x̂σ

k . As a result, the marginal Type-k agent can be
very uncertain about others’ participation. To better represent the strategic uncertainty, we rewrite
the left-hand side of the above equation as an integral with respect to the mass of participating
agents, i.e.,

∫ 1

0

[∫
∞

0
(sk[z]−1)g(z; x̂σ

k ,M
σ (θ))dz

]
dmσ

k (θ)

dMσ (θ)
dMσ (θ) = O(σ).

The strategic uncertainty faced by a marginal Type-k agent is captured by dmσ
k (θ)

dMσ (θ) , which is a

18The law of large numbers is not well defined for a continuum of random variables (Sun, 2006). Our convention is
equivalent to assuming that the agents’ play is the limit of play of finite selections from the population.
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function of the mass of participating agents, Mσ (θ), the mass of each type j, Q j, and the relative

distance between Type- j and Type-k agents’ switching cutoffs,
x̂σ

j −x̂σ
k

σ
, i.e.,

dmσ
k (θ)

dMσ (θ)
≡ f

(
Mσ (θ);

{
Q j,

x̂σ
j − x̂σ

k

σ

}n

j=1

)
.

Formally, we define f is as follows.19

Definition 1. For any type k ∈{1,2, . . . ,n} and any {Q j,∆k, j}n
j=1,

f
(
M;{Q j,∆k, j}n

j=1
)
≡

φ
(
Φ−1(1−mk)

)
∑

n
j=1 Q jφ

(
Φ−1(1−mk)+∆k, j

) ,
where mk is a function of M implicitly defined by

M =
n

∑
j=1

Q j −
n

∑
j=1

Q jΦ
(
Φ

−1(1−mk)+∆k, j
)
.

As σ → 0, each switching cutoff x̂σ
j converges to a real number x̂ j, and each relative distance

(x̂σ
j − x̂σ

k )/σ converges to a real number or goes to infinity, denoted by ∆k, j ∈ R∪{+∞,−∞}. For
a given set of masses {Q j}n

j=1 and relative distances {∆l, j}n
l, j=1, to simplify the notation, we define

for each Type-k
fk (M) = f

(
M;{Q j,∆k, j}n

j=1
)
, (15)

Then the marginal agent’s breakeven condition becomes

∫
∞

0
sk[z]

[∫
∞

0
g(z; x̂k,M) fk(M)dM

]
dz = 1. (BE)

The left-hand side is the expected payoff perceived by a marginal Type-k agent, and the right-hand
side is his opportunity cost of participation. We will show that f (·) is the probability density func-
tion of the mass of participating agents from a marginal Type-k agent’s perspective. Throughout
the paper, fk(·) is referred to as Type-k perception of participation.

19By mσ
k (θ) = 1−Φ

((
x̂σ

k −θ
)
/σ
)

and Mσ (θ)≡ ∑
n
k=1 Qkmσ

k (θ), it is straightforward to see that

dmσ
k (θ)

dMσ (θ)
=

dmσ
k (θ)/dθ

dMσ (θ)/dθ
=

φ
(
Φ−1(1−mσ

k (θ))
)

∑
n
j=1 Q jφ

(
Φ−1(1−mσ

k (θ))+
x̂σ

j −x̂σ
k

σ

)
and

Mσ (θ) =
n

∑
j=1

Q j −
n

∑
j=1

Q jΦ

(
Φ

−1(1−mσ
k (θ))+

x̂σ
j − x̂σ

k

σ

)
.
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4.2 Characterization of the Equilibrium

For a given security bundle, the subgame at date 1 is a global game in which agents have potentially
heterogeneous payoffs. The following proposition characterizes the unique equilibrium of this
subgame at vanishing noise.

Proposition 2. Given a security bundle {(Sk,Qk)}n
k=1, for each k ∈ {1,2, ...,n}, the Type-k agents’

switching cutoff x̂σ
k converges to an x̂k ∈ R as σ → 0. In particular, {x̂k}n

k=1 satisfy the following

system of n equations:

∫
∞

0
sk[z]

[∫
∞

0
g(z; x̂k,M) fk (M)dM

]
dz = 1, (16)

where fk (M) is given by Equation (15),

∆k−1,k


=+∞, if x̂k > x̂k−1

=−∞, if x̂k < x̂k−1

∈ [−∞,+∞], if x̂k = x̂k−1

, (17)

and

−∆k, j = ∆ j,k =
k

∑
i= j+1

∆i−1,i. (18)

Conversely, if {x̂k}n
k=1 and {∆k, j} j,k∈{1,2,...,n} satisfy Equation (16), Equation (15), Equation (17),

and Equation (18), then the Type-k agents’ cutoff x̂σ
k converges to x̂k as σ → 0.

Equation (16) is the breakeven condition of a marginal Type-k agent. In particular,∫
∞

0
g(z; x̂k,M) fk (M)dM

is the probability density of the project value z conditional on receiving the cutoff signal x̂k. It
can be viewed as the pricing kernel for a marginal Type-k agent such that he prices the security at
1, which is his opportunity cost of participation. To understand Equation (17) and Equation (18),
note that when x̂k > x̂k−1 (x̂k < x̂k−1), by definition, the limit relative distance ∆k−1,k= limσ→0(x̂σ

k −
x̂σ

k−1)/σ = +∞ (−∞). When the limit cutoffs are equal, the limit relative distance can take finite
values. Notably, these conditions are not only necessary but also sufficient for {x̂k}n

k=1 to be
the equilibrium cutoffs. Sufficiency is important in a design problem, because it guarantees that
the security bundle derived based on these conditions indeed induces the desirable outcome in
equilibrium.

The intuition behind this equilibrium characterization can be appreciated in an example with a
two-type bundle. Let x̂σ

1 and x̂σ
2 denote the two equilibrium switching cutoffs of the Type-1 and
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the Type-2 agents, respectively. If the two securities are equally attractive, both types of the agents
choose the same switching cutoff x̂σ

1 = x̂σ
2 , and their respective marginal agents share the same

view on θ as well as the same belief on the mass of participating agents. At vanishing σ , the same
view on θ results in identical conditional p.d.f. of the project value, i.e., g(·; x̂1,M) = g(·; x̂2,M)

for any given mass of participating agents M; and the same belief on the mass of participating
agents is captured by the same perception of participation f1(M) = f2(M) = 1/(Q1 +Q2) , where
M ∈ [0,Q1+Q2]. As a result, the marginal agents of both types share the same p.d.f. of the project
value z, i.e.,

∫
∞

0 g(z; x̂1,M) f1 (M)dM =
∫

∞

0 g(z; x̂2,M) f2 (M)dM.
Now suppose security s1[·] is slightly more attractive than s2[·], resulting in x̂σ

1 < x̂σ
2 , i.e., the

Type-1 agents are more eager to participate. In this case, the limit cutoffs could remain identi-
cal, i.e., x̂1 = x̂2, but the limit relative distance becomes strictly positive, i.e., ∆1,2 = limσ→0(x̂σ

2 −
x̂σ

1 )/σ > 0, resembling two different channels through which the security design may affect the
agents’ equilibrium behavior. The first one is the fundamental channel. Since x̂1 = x̂2, the marginal
agents of both types share almost the same belief about the fundamental state θ . Hence, in this
case, the fundamental channel does not come into effect, because for any given mass of partic-
ipating agents M, the marginal agents of both types hold almost the same conditional p.d.f. of
the project value z, i.e., g(·; x̂1,M) = g(·; x̂2,M). However, since ∆1,2 > 0, they perceive others’
participation differently. This is the strategic channel via which the security design effects. In
particular, the marginal Type-1 agents perceive that Type-2 agents are less likely to participate
while the marginal Type-2 agents perceive the opposite about Type-1. This is captured by that the
Type-1 perception of participation f1(·) is leftward-tilted relative to the Type-2 perception of par-
ticipation f2(·), i.e., as probability densities of the mass of participating agents, f1(·) is first order
stochastically dominated by f2(·). Since g(·;θ ,M) satisfies SMLRP,

∫
∞

0 g(z; x̂1,M) f1 (M)dM is
also first order stochastically dominated by

∫
∞

0 g(z; x̂2,M) f2 (M)dM, meaning that regarding the
project value z, the marginal Type-1 agents are more pessimistic relative to the marginal Type-2
agents. The relative distance ∆1,2 hence reflects the degree to which the marginal Type-1 (Type-2)
agents are more (less) pessimistic, and in equilibrium it varies to adjust the marginal agents of both
types’ beliefs about the project value z, so that they both price their respective securities at 1, their
opportunity cost of participation.

When security s1[·] becomes significantly more attractive than s2[·], the limit cutoffs of the
two types of agents become distinct to each other, i.e., x̂1 < x̂2. In this case, ∆1,2 = limσ→0(x̂σ

2 −
x̂σ

1 )/σ = ∞ so that the potential impact of security design through the strategic channel is ex-
hausted, in the sense that the marginal Type-2 (Type-1) agents are almost sure that Type-1 (Type-
2) agents will (not) participate. Although holding quite opposite beliefs regarding the other type’s
participation, since security s1[·] is significantly more attractive than s2[·], the divergence in beliefs
cannot close the gap between the attractiveness of the two securities. As a result, the fundamen-

21



tal channel has to come into effect. In particular, since x̂1 < x̂2, the marginal agents of Type-1’s
(Type-2’s) belief about the fundamental state θ is strictly more pessimistic (optimistic) than that of
the marginal agents of Type-2 (Type-1). Hence, the marginal agents of Type-1 (Type-2) are strictly
more pessimistic (optimistic) in both the fundamental state and the other type’s participation. As
such, the equilibrium cutoffs always make the marginal agents of both types price their respective
securities at 1.

4.3 A Closer Look at the Perception of Participation

In this subsection, we take a closer look at the perception of participation, which is characterized by
Proposition 3 below. This proposition helps understand how agents perceive others’ participation
in equilibrium and thus provides the foundation for security design.

Without loss of generality, in the rest of the paper, we number the types of securities such
that ∆k−1,k is nonnegative for all k. For notational convenience, let ∆0,1 = ∆n,n+1 = +∞ and x̂0 =

−x̂n+1 =−∞ for any n-type bundle. Define L(k)≡max{ j : ∆k, j =−∞} and U(k)≡max{ j : ∆k, j <

+∞}. An immediate implication of this definition is that ∆i,k is finite for any L(k) < i ≤U(k), so
L(i) = L(k) and U(i) =U(k).

Proposition 3. The perception of participation has the following properties:

1. For any M ∈
(

0,∑n
j=1 Q j

)
,

n

∑
j=1

Q j −
n

∑
j=1

Q jΦ

(
Φ

−1
(

1−
∫ M

0
fk (y)dy

)
+∆k, j

)
= M. (19)

In particular,
∫ ∑

n
j=1 Q j

0 fk (y)dy = 1.

2. ∑
n
k=1 Qk fk (M) = 1 for M ∈ (0,∑n

k=1 Qk).

3. fk (M) is positive for M ∈
(

∑
L(k)
j=1 Q j,∑

U(k)
j=1 Q j

)
and 0 elsewhere.

4. For L(k) < i ≤ U(k) and M ∈
(

∑
L(k)
j=1 Q j,∑

U(k)
j=1 Q j

)
,
∫M

0 f
(

y;{Q j,∆k, j}n
j=1

)
dy is strictly

increasing in ∆k,i.

5. For any L(k)< i ≤U(k), if ∆k,i = 0,then fk (M) = fi (M); if ∆k,i > (<)0, then fk (M)/ fi (M)

is strictly decreasing (increasing) in M over
(

∑
L(k)
j=1 Q j,∑

U(k)
j=1 Q j

)
.

The first property follows the construction of fk(M). To see this, we can write

∫ M

Mσ (θ)=0
fk (Mσ (θ))dMσ (θ) =

∫ M

Mσ (θ)=0

dmσ
k (θ)

dMσ (θ)
dMσ (θ)+O(σ) = mσ

k (θ)+O(σ),
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where

M =
n

∑
j=1

Q j −
n

∑
j=1

Q jΦ
(
Φ

−1(1−mσ
k (θ))+∆k, j

)
+O(σ).

It also confirms that fk (y) is indeed a probability distribution.
The second property states that the aggregate perception of participation equals one every-

where, which nests Equation (6) in our illustrative example as a special case. This property is an
immediate implication of the Bayes’ rule with improper prior. In the limit case, the agents’ private
information completely dominates their prior information of the state, so they act as if the prior is
improper. This is an important constraint on security design.

The third property characterizes the support of perception of participation. For i ≤ L(k), the
marginal Type-k agents perceive that the Type-i agents participate almost surely. For i > U(k),
the marginal Type-k agents perceive that the Type-i agents do not participate almost surely. For
other types of agents, the marginal Type-k agents are uncertain whether they are participating.
Therefore, from the marginal Type-k agents’ perspective, the mass of participating agents must be
within

(
∑

L(k)
j=1 Q j,∑

U(k)
j=1 Q j

)
almost surely and may take any value in the region.

The fourth property captures how the relative distance between cutoffs affects the perception of
participation. When ∆k,i increases, the marginal Type-k agents perceive that the Type-i agents are
less likely to participate. As a result, they perceive scenarios with low levels of participation more
likely, so their perception of participation shifts toward the left. This property has an important
implication for security design. By altering ∆k,i between the securities, the principal can adjust the
marginal agents’ perception of participation as well as how much they care about their security
payments in scenarios with different levels of participation.

The fifth property concerns the relative perception of participation between different types.
If ∆k,i > 0, the marginal Type-i agents are more pessimistic about others’ participation than the
marginal Type-k agents.

5 Security Design

This section studies the principal’s security design problem. Suppose the security bundle {(Sk,Qk)}n
k=1

is offered and results in equilibrium cutoffs {x̂σ
k }

n
k=1. In state θ , mass Qkmσ

k (θ) of Type-k agents
participate, so the principal’s expected payoff is

E[πP] =
∫

∞

−∞

[∫ +∞

0

(
z−

n

∑
k=1

mσ
k (θ)Qksk [z]

)
g(z;θ ,Mσ (θ))dz

]
h(θ)dθ .
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As σ vanishes, mσ
k (θ) converges to 1{θ > x̂k}. That means, in the limit case, Type-k agents almost

all participate if θ > x̂k and almost all reject if θ < x̂k. Then we obtain the following Proposition 4.

Proposition 4. As σ → 0, the mass of participating agents in state θ converges in probability to

n

∑
k=1

Qk ·1{θ > x̂k},

and the principal’s expected payoff converges to

n

∑
k=0

∫ x̂k+1

x̂k

(
E

[
z | θ ,

k

∑
j=1

Q j

]
−E

[
k

∑
j=1

S j [z]

∣∣∣∣∣θ , k

∑
j=1

Q j

])
h(θ)dθ , (20)

where x̂0 and x̂n+1 are defined as −∞ and ∞, respectively

Note that by Assumptin 2, for i = 0,1,

|Ei[z|θ ,K1]−Ei[z|θ ,K2]| ≤ |K1 −K2| .

That means, agents’ participation does not generate positive surplus unless it contributes to the
regime change. An implication of this property is that the optimal security bundle should induce
all types of agents to have identical limit cutoffs at vanishing noise. To see the intuition, suppose
regime change takes place at θ̂ . For the types of agents whose cutoffs are greater than θ̂ , their
participation has almost no impact on whether regime change takes place. When they participate,
the principal must pay each of them at least 1 in expectation but the increase in the expected value
of the project is smaller. The principal would be better off not offering them securities. For the
types of agents whose cutoffs are smaller than θ̂ , they may participate at θ < θ̂ . In these states,
their participation has almost no impact on whether regime change takes place either. The principal
would be better off offering them less attractive securities such that their cutoffs are θ̂ .

Proposition 5. The optimal security bundle must induce an identical limit cutoff θ̂ for all agents..

The rest of the section is devoted to deriving the properties of optimal security bundles. By
Proposition 5, we focus on security bundles that induce an identical limit cutoff θ̂ for all agents.
Intuitively, a finer differentiation of agents always makes the principal weakly better off. With
more types allowed, the principal can at least replicate any security bundle with fewer types. In
addition to the trivial weak dominance, we find that proper differentiation of agents can make the
principal strictly better off. To manifest the nontrivial strict dominance, we focus our attention on
the optimal security bundles with the fewest types.
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5.1 Directions for security design

Before formally establishing the results, we discuss the forces shaping security design. Suppose
that the optimal security bundle {(Sk,Qk)}n

k=1 induces a common cutoff θ̂ . Note that given the
total mass of agents K ≡ ∑

n
k=1 Qk and the common cutoff θ̂ , the expected value of the project is a

fixed value ∫
θ̂

−∞

E [z|θ ,0]h(θ)dθ +
∫ +∞

θ̂

E [z|θ ,K]h(θ)dθ ,

and the expected payment to the agents is

∫ +∞

θ̂

E

[
n

∑
k=1

Sk [z] | θ ,K

]
h(θ)dθ ,

which is completely determined by the aggregate security. Essentially, the principal’s problem is
to minimize the aggregate security subject to the constraints: ∀k ∈ {1,2, . . . ,n},

Qk ≤
∫ K

0
E
[
Sk [z] | θ̂ ,M

]
fk (M)dM.

It is not hard to see that the constraints must be binding for the optimal security bundle. An
alternative way to think about the problem is that if we can relax the constraints while holding

∑
n
k=1 Sk [z] fixed, we can further shrink ∑

n
k=1 Sk [z]. To shed light on the potential way to relax the

constraints, we combine all the constraints into the following aggregate one

K ≤
n

∑
k=1

∫
∞

0
{Sk[z]−Sk[0]}

{∫ K

0
g
(
z; θ̂ ,M

)
fk (M)dM

}
dz.

The first term in the integral is a security’s payoff sensitivity when the project value increases from
0 to z, and the second term is marginal Type-k agents’ perceived distribution of the project value,
which is governed by their perception of participation. Lower perception of participation implies
that the distribution concentrates more (less) on low (high) project values.

As argued in Section 2, the principal should differentiate agents with respect to both payoff
sensitivity and perception of participation and induce an “assortative matching” between them.
However, the subtlety here is that an agent’s payoff sensitivity is not uniform and vary with the
project value. This implies that a more delicate “assortative matching” could be favorable for the
principal: offer agents with low perception of participation securities with high payoff sensitivity
at low project values and low payoff sensitivity at high project values. Later, we will see that a
tranching structure is the best at implementing such delicate “assortative matching” .
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5.2 Security formats

First, we provide a simple observation regarding two types with same perception of participation.

Lemma 3. If a security bundle has ∆k−1,k = 0 in equilibrium, it is equivalent for the principal

to offer Type-(k − 1) and Type-k agents the same security (Sk−1 +Sk,Qk−1 +Qk) while keeping

other securities unchanged. Conversely, it is equivalent for the principal to split the agents of any

type k into two types and offer them
(
S′k,Q

′
k

)
and

(
S′′k ,Q

′′
k

)
respectively, as long as S′k + S′′k = Sk,

Q′
k +Q′′

k = Qk, and∫
∞

0 S′k[z] [
∫

∞

0 g(z; x̂k,M) fk (M)dM]dz
Q′

k
=

∫
∞

0 S′′k [z] [
∫

∞

0 g(z; x̂k,M) fk (M)dM]dz
Q′′

k
.

If ∆k−1,k = 0, by Proposition 2 and Proposition 3, fk−1 (M) = fk (M). Therefore, Type-(k−1)
and Type-k marginal agents evaluate their securities in the exactly same way. Essentially, they act
like the same type, so the principal can directly merge them into one type without changing the
equilibrium. Conversely, for Type-k agents, the principal can split their aggregate security into two
different ones and offer to them. Such split does not change the equilibrium as long as the new
securities are valued the same by marginal Type-k agents.

Lemma 3 implies that to derive the optimal security bundle with the fewest types, it suffices to
focus on the security bundles with all ∆k−1,k being positive. Based on this, Proposition 6 charac-
terizes the formats of the optimal securities: they must constitute a tranching structure.

Proposition 6. The optimal security bundle with the fewest types must contain a tranching struc-

ture such that

• agents with identical perception of participation are offered an identical tranche and

• agents with lower perception of participation are offered more senior tranches.

That is, if {(Sk,Qk)}n
k=1 is optimal, it must satisfy ∆k−1,k > 0 and Sk = TFk −TFk−1 where 0 = F0 <

F1 < .. . < Fn.

Proposition 6 follows two ideas. The first idea is that the principal and the marginal agents
value cash flows differently. To be specific, for the k-th type, suppose its cutoff is θ̂ . Let

W A
k (z)≡

∫
∞

0
g
(
z; θ̂ ,M

)
fk (M)dM,

W P(z)≡
∫

∞

θ̂

g(z;θ ,K)h(θ)dθ .

According to Equation (16), W A
k (z) is the marginal Type-k agents’ posterior probability that the

project value is z and each of them receives sk[z]. Hence, if sk[z] increases by 1, their expected
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payoff increases by W A
k (z). W P(z) has a similar interpretation from the principal’s perspective. Ac-

cording to Equation (20), if Sk[z] increases by 1, the expected payment to Type-k agents increases
by W P(z). Due to the the strict monotone likelihood ratio property (SMLRP) of the distribution
of the project value g(z;θ ,K) and the distribution of the noise φ(·), W A

k (z) and W P(z) satisfy the
following properties.

Lemma 4. For any k and z1 < z2,

W P(z2)

W P(z1)
>

W A
k (z2)

W A
k (z1)

and
W A

k (z2)

W A
k (z1)

>
W A

k−1(z2)

W A
k−1(z1)

.

The first implication of Lemma 4 is that the principal cares more about the security payment
at high project values than marginal agents. From the principal’s perspective, conditional on a
positive mass of Type-k agents participating, the state is at least θ̂ almost surely, and the mass of
participating agents is at least K almost surely. So, the project value is higher than that expected
by the marginal Type-k agents. Another way to understand the difference is that the principal is
concerned about the total payment to all participating agents including the marginal ones as well
as those observing higher signals. The security payment of the latter ones is more at high project
values.

The second implication of Lemma 4 is that marginal Type-k agents care more about the pay-
ment at high project values than marginal Type-(k− 1) agents. Since x̂k−1 = x̂k ∆k−1,k > 0, the
former ones have almost the same view on the fundamental as the latter ones but higher perception
of participation. As a result, the former ones perceive high project values to be more likely than
the latter ones do.

The second idea that Proposition 6 follows is that to convince agents to participate in a cost-
effective way, the principal should allocate the cash flow at certain project values to the agents who
value it most. On the one hand, since marginal agents value cash flows at low project values more,
the principal would be better off by giving the agents cash flows at low project values in exchange
for those at high project values. However, this improvement is constrained by monotonicity of
securities and the budget constraint. Therefore, the optimal security bundle should look like a
senior tranche in aggregate. On the other hand, regarding the allocation of cash flows between
Type-k and Type-(k−1) agents, the principal should allocate more cash flows at low (high) project
values to Type-(k − 1) (Type-k) agents. Due to the same constraint mentioned above, this idea
naturally implies that the optimal security bundle should constitute a tranching structure.

To see why a tranching structure is optimal more concretely, let’s take a two-type security
bundle {(Sk,Qk)}2

k=1 as an example. Suppose that ∆1,2 < +∞. In Panel (a) of Figure 1, the
horizontal axis represents the project value z; the dotted line represents the 45-degree line; the two
solid lines represent the two securities S1 and S2. Now, instead of S1, Type-1 agents are offered S′1.

27



𝑧0

𝑆$

𝑆%

𝐴

𝐵

Panel (a): between the agents Panel (b): between the principal and the agents

𝐶
𝐷

𝑆$’

𝑧0

𝑆%

𝑆$’

𝑆%′ 𝑆%′

𝐸
𝐺 𝑇./

Figure 1: The Tranching Structure

To ensure that Type-1 agents still have the cutoff θ̂ , Part A and Part C must be valued the same
from the perspective of the marginal Type-1 agents. If we keep the aggregate security unchanged,
Type-2 agents lose Part A but receive Part C. Since W A

2 (z)/W A
1 (z) is strictly increasing in z, Part C

implies a strictly higher expected payment than Part A from the perspective of the marginal Type-
2 agents. That means, the firm can offer a security S′2, which specifies a strictly lower payment
than S1 + S2 − S′1 does, to Type-2 agents while still having them participate almost surely in the
state θ̂ . Hence, the total expected payment is reduced. Further, as shown in Panel (b) of Figure 1,
the principal can offer a senior tranche TF1 to Type-1 agents instead of S′1 such that Part E and
Part G are valued the same from their perspective. Since W P(z)/W A

1 (z) is strictly increasing in
z, Part E implies a strictly lower expected payment to Type-1 agents than Part G does from her
perspective. As such, the total expected payment is reduced further. Iterating the same procedure,
the principal can be better off by offering Type-2 agents a senior tranche of the residual project
value TF2 [z−TF1[z]], which is also a junior tranche of the whole project value (TF2 −TF1) [z].

Two comments about Proposition 6 are in order. First, the optimality of tranching structures
does not rely on vanishing noise because the principal and marginal agents value cash flows dif-
ferently in the same way as above for any σ . Second, Proposition 6 implies tranching structures
but not necessarily ones with multiple tranches. It does not rule out the possibility that the op-
timal security bundle offers a senior tranche to all agents and they have the same perception of
participation.
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Figure 2: Positive Premium due to Miscoordination

5.3 The number of the types

In this subsection, we determine the number of the types of securities in the optimal security
bundle with the fewest types. This feature is important because it directly indicates whether and to
what extent differentiating agents is desirable. As discussed in Section 2 and Section 5.1, security
design should implement an “assortative matching” strategy. A simple intuition is that a higher
number of the types enables a finer way to differentiate agents and implement assortative matching.
Proposition 7 confirms this intuition and indicates that the optimal security bundle should use up
all available types.

Proposition 7. The optimal security bundle with the fewest types of securities must contain N

types.

To illustrate the intuition of Proposition 7, we take N = 2 as an example. Suppose Proposition 7
does not hold and the optimal security bundle with the fewest types has only one type {(S,K)}
with an equilibrium cutoff θ̂ . As implied by Proposition 6, it must be a senior tranche, so S = TF .
According to Lemma 3, we can split (TF ,K) into a senior tranche (TF1,Q1) and a junior tranche
(TF −TF1,K−Q1) such that the mass K of agents behave in the same way as they do in the original
equilibrium: x̂1 = x̂2 = θ̂ and ∆1,2 = 0. Panel (a) of Figure 2 demonstrates this split.

Consider a marginal increase of ∆1,2 from 0. It pushes f1(M) to shift leftward and f2(M) to
shift rightward, while keeping fixed their weighted sum

Q1 f1(M)+(K −Q1) f2(M).
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As a result of the shift in perception of participation, Type-1 agents now demand a better security
or F ′

1 > F1 to participate in the state θ̂ , and Type-2 agents now would be willing to accept TF ′−TF ′
1
.

A general insight in the literature of security design is that a senior tranche is less sensitive to the
project value. If it is true, a small positive ∆1,2 per se will hurt Type-1 agents to a lesser extent than
it benefits Type-2 agents, so

{
(TF ′

1
,Q1),(TF ′ −TF ′

1
,K −Q1)

}
strictly dominates {(TF ,K)}.

However, this insight does not hold for all ranges of project values. Specifically, in the 45-
degree region of the senior tranche, the junior tranche is always worth 0 and has lower payoff
sensitivities. Take as an example the three points in Panel (b) of Figure 2, z1, z2, and z3 that satisfy
z1 < z2 = F1 < F < z3. The senior tranche has lower payoff sensitivity than the junior tranche
between z2 and z3 but higher one between z1 and z2.

Since the senior tranche has both a higher-sensitivity region and a lower-sensitivity region, the
net impact of a marginal increase of ∆1,2 is ambiguous in general. When f1(M) shifts leftward,
the distribution of the project value from marginal Type-1 agents’ perspective also shift leftward.
For example, we can imagine that some probability flows from z2 and z3 to z1. Correspondingly,
from marginal Type-2 agents‘ perspective, the same amount of probability flows from z1 and z2 to
z3. The senior tranche has lower (higher) payoff sensitivity between z1 and z3 (z2 and z3) than the
junior tranche, so the flow of probability between them decreases (increases) F ′. In general, it is
hard to say which kind of flows dominate because it depends on the function of the project value g

and the distribution of the noise φ .
However, we can always choose to carve out a sufficiently small senior tranche. With a smaller

F1, the senior tranche has a smaller 45-degree region. That means, the flow of probability between
points like z1 and z3 is smaller while that between points like z2 and z3 is bigger. As such, there
always exists a small senior tranche such that the flows that reduce F ′ dominate at margin so that
∂F ′/∂∆1,2 < 0 holds at ∆1,2 = 0. Another way to understand this result is that a sufficiently small
senior tranche is very close to a risk-free security that has zero payoff sensitivity everywhere, so the
leftward shift in f1(M) does little harm to Type-1 agents but the rightward shift in f2(M) still does
substantial good to Type-2 agents. Here, we can see the importance of the assumption G(0;θ ,K) =

0. When G(0;θ ,K)> 0, a senior tranche would always differ from a risk-free security substantially
no matter how small it is.

5.4 The Bottom Line

To summarize, when multiple types of securities can be offered, the optimal security bundle uses
multiple tranches to intentionally differentiate agents with respect to perception of participation
and payoff sensitivity and match them positively. The motivation for such multi-tranche structures
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is to mitigate the adverse impact of miscoordination.20

The tranching structure is optimal because it polarizes the payoff sensitivity of different types
so that they have very different comparative advantages to bear the adverse impact of miscoordi-
nation. A senior (junior) tranche has comparatively higher sensitivity at low (high) project values
and should be offered to agents with low (high) perception of participation. Notably, the dif-
ferentiation with respect to payoff sensitivity is closely associated with the differentiation with
respect to perception of participation. When agents have the same perception of participation, as
implied by Lemma 3, how their payoff sensitivity is differentiated does not matter: only their ag-
gregate security matters. When agents have heterogeneous perception of participation, as implied
by Proposition 6, tranches should be assigned to agents according to perception of participation.

Proposition 7 further confirms that it is desirable for the principal to differentiate agents in the
finest way. It should be clear that this result relies heavily on that proper security formats can be
used. In Section 6.1, we discuss a case with a restriction on security formats in practice. There
differentiating agents is not favorable because the restriction prevents the beneficial “assortative
matching”. In a word, the interaction between the differentiation in the two dimensions is crucial
to the optimal security bundle.

6 Discussion

6.1 Collinear securities

Here, we aim to make it clear that the desirability of differentiation relies on proper design of
security formats. To illustrate this point, we consider the problem with a kind of restriction on
security formats common in practice. In many contexts, securities can be differentiated but have
to be collinear. For example, when a firm grants shares to important employees, the actual payoffs
can be differentiated by heterogeneous numbers of shares but they are all proportional to the firm’s
performance. Similarly, in syndicate financing, an entrepreneur issues the same security to in-
vestors but may offer them different upfront fees. A natural question is, if only collinear securities
can be offered, is differentiating agents desirable for the principal?

Proposition 8. If the principal can only offer collinear securities, it is optimal for her to offer

agents identical securities.

Proposition 8 implies that it is actually strictly worse to differentiate agents if their securities
have to be collinear. To see the intuition, let’s take a look at the case with two-type bundles.

20It can be shown that when agents can coordinate perfectly, offering all agents an identical security can always be
optimal in the baseline setup.
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Consider the bundle {(Qisi,Qi)}i=1,2 with si[·] = s[·]/pi that induce a common cutoff θ̂ . Then the
aggregate security is S[·] ≡ (Q1/p1 +Q2/p2)s[·]. If p1 < p2, Type-1 agents are offered a better
security, so they must have lower perception of participation. However, they also have higher
payoff sensitivity. For any z > 0,

si[z]− si[0] = {s[z]− s[0]}/pi,

which is uniformly greater for a smaller pk. Due to the restriction to collinear securities, differenti-
ation can only lead to negative matching between perception of participation and payoff sensitivity,
so it is not desirable.

In addition to manifesting that differentiation is not desirable on its own, this special case also
helps contrast our model to the existing literature of contracting with externalities, especially Segal
(2003), Winter (2004), and Halac et al. (2020). They capture strategic risk by focusing on the worst
equilibrium of a coordination game with perfect information. Such combination of equilibrium
selection and the information structure prohibits agents from providing assurance in a mutual way,
so differentiation of agents’ payoff is always preferred. Another recent paper, Halac et al. (2021),
allows the principal to create rank uncertainty among agents, through which the principal can build
mutual assurance among agents. They find that differentiation of agents’ payoff is not preferred
if agents are ex ante homogeneous. Different from theirs, our paper consider a coordination game
with imperfect information and is the first to highlight whether differentiation of agents’ payoffs is
desirable depends on the payoff structures the principal can offer to agents.

6.2 Should differentiation be taken to extremes?

We have shown that the optimal security design induces differentiation in agents’ perception of
participation. A natural speculation is that it might be optimal to take such differentiation to ex-
tremes: let all ∆k−1,k be infinity. It corresponds to the case where there is no strategic uncertainty
between any two types of agents: marginal Type-(k− 1) agents think all Type-k agents reject al-
most surely and the marginal Type-k agents think all Type-(k−1) agents participate almost surely.
However, this speculation is not correct.

To quickly see this point, let’s revisit the example in Section 2. According to the previous
analysis, we know that for any ∆ ≥ 0, it is the optimal to give Bank 1 the most senior part, so
c1 = C and c2 = 0. By Equation (7) and Equation (8), we obtain that the total face value is a
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function of ∆, i.e.,

D(∆)≡ d1 +d2

=C+
1−C

P0(x̂)+ [P1(x̂)−P0(x̂)] · f (∆)
+

1
P0(x̂)+ [P1(x̂)−P0(x̂)] · f (−∆)

.

Taking the derivative with respect to ∆, we obtain

D′ (∆) =− d f (∆)
d∆

[P1(x̂)−P0(x̂)]×(
1−C

{P0(x̂)+ [P1(x̂)−P0(x̂)] · f (∆)}2 −
1

{P0(x̂)+ [P1(x̂)−P0(x̂)] · f (−∆)}2

)

As ∆ →+∞, f (∆)→ 0 and f (−∆)→ 1. Hence, for ∆ =+∞ to minimize D(∆), we need

1−C
P0(x̂)2 −

1
P1(x̂)2 < 0.

Apparently, this inequality does not hold when P0(x̂) is small relative to P1(x̂).
To see the intuition in a sharp way, let’s assume P0(x̂)≈ 0 and P1(x̂)≈ 1. To induce a marginal

increase in ∆, the firm needs to increase Bank 1’s face value from d1 to d1+δ1 because his perceives
a lower success probability upon observing his cutoff. For Bank 1, this increase in the face value
is worth almost

δ1 {P0(x̂)+ [P1(x̂)−P0(x̂)] · f (∆)} .

Similarly, the firm can reduce Bank 2’s face value from d2 to d2−δ2, and for Bank 2, this decrease
is worth almost

δ2 {P0(x̂)+ [P1(x̂)−P0(x̂)] · f (−∆)} .

When f (∆) is small, Bank 1 thinks that he is unlikely to get fully repaid, so one unit of increase
in the face value of his debt benefits him negligibly. However, Bank 2 thinks that he is likely to
get fully repaid, so one unit of decrease in the face value of his debt hurts him substantially. As
a result of the difference in the perceived success probability, δ1 is larger than δ2. That means, a
marginal increase in ∆ increases the total face value.

Note that when ∆ = 0, the two banks perceive the same probability of getting fully repaid. One
unit of change in the face value means the same for them at margin. Therefore, their difference in
payoff sensitivity becomes the dominant factor.

To sum up, the tension is that increasing the face value of a senior tranche mainly increases its
value at high project values, but senior tranche holders, who have low perception of participation,
do not value cash flows at high project values much. Therefore, further reducing senior-tranche
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holders’ perception of participation may require a large increase in the face value of the senior
tranche.

6.3 General production technology

In the baseline setup, we deliberately assume that the production technology takes a form of gen-
eralized regime change to simplify the illustration. Here, we show that our main results still hold
with more general production technology. We allow g(z;θ ,K) to have multiple but a finite number
of regime changes, i.e.,

g(z;θ ,K) = gi (z;θ ,K) , if λi(θ)≤ K < λi+1(θ),

where λi(θ) is weakly decreasing in θ and strictly increasing in i. We still assume gi (z;θ ,K) is
Lipschitz continuous but impose no restriction on the Lipschitz constants. Specifically, ∃R > 0, s.t.
for any i,

|Ei[z|θ1,K1]−Ei[z|θ2,K2]| ≤ R |θ1 −θ2|+R |K1 −K2| .

That means, we abandon the assumption that agents’ participation does not generate positive sur-
plus unless it induces regime change.

In this setup, Proposition 2, Proposition 3, and Proposition 4 still hold, but Proposition 5 does
not. The optimal security bundle may induce agents to have different cutoffs in the limit case.
Suppose that the set of all cutoffs have T elements, say θ1 < θ2 < .. . < θT . In addition, for
notional convenience, we let −θ0 = θT+1 =+∞. The mass of participating agents is essentially a
step function of the state θ

K
(
θ ;{Kt ,θt}T

t=1
)
≡

T

∑
t=1

Kt ·1{θt < θ ≤ θt+1}, (PS)

where Kt is equal to the mass of agents whose cutoff is no more than θt , i.e., Kt = ∑{k|x̂k≤θt}Qk.
K
(
θ ;{Kt ,θt}T

t=1
)

is referred to as a T -cutoff participation scheme throughout the paper. Note that
T is weakly smaller than the number of types because agents of different types can have the same
cutoff in the limit case.

The principal’s problem can be divided into two steps. The first step is to pick a participation
scheme. Since the expected project value is completely determined by the participation scheme,
the second step is to minimize the total expected payment to agents, given that the participation
scheme is implemented. We can show that given any participation scheme, the optimal security
bundle implementing it must satisfy the properties specified in Proposition 6 and Proposition 7.
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6.4 Offering menus to agents

The baseline setup assumes that the principal can offer an agent one security. Here, we show that
this is without loss of generality because the principal does not benefit from offering more than
one security to any agent.

Suppose that the principal offers n types of menus to agents. Denote the maximum payoff that
a Type-k agent can receive at the project value z by choosing a security from his menu by smax

k [·].
Due to the budget constraint, we have

n

∑
k=1

Qksmax
k [z]≤ z.

It is not hard to see that each agent still follows a cutoff strategy to participate. Denote their cutoffs
by {x̂k}n

k=1. Suppose that upon observing x̂1, Type-1 agents participate and choose the security
s1

1[·].
We claim that the principal is at least weakly better off by offering the single security s1

1[·] to
Type-1 agents while holding the menus offered to other agents fixed. This change does not violate
the budget constraint and thus is feasible. Notice that s1

1[·] must satisfy

∫
∞

0
s1

1[z]
[∫

∞

0
g(z; x̂1,M) f1 (M)dM

]
dz = 1.

If the principal offers s1
1[·] instead, all agents’ participation still follow the same cutoff strategies.

Therefore, offering Type-1 agents more securities other than s1
1[·] does not change the expected

project value, but gives them more options to maximize the expected security payment that the
principal pays to them. Therefore, the principal does not benefit from offering more options.

6.5 Zero contracting premium due to miscoordination

In the baseline model, we assume that the lowest possible project value is always zero irrespective
of the state of the economy θ and the level of participation K. As a result, the contracting pre-
mium due to miscoordination, which is captured by the difference between the expected security
payments to agents and their participation costs, is always positive, and thus the principal always
prefer a finer differentiation strictly. In practice, it is also possible that as θ or K gets higher, the
lowest possible project value increases accordingly. This opens up the possibility that the principal
can use a security bundle to achieve zero contracting premium. Since such a bundle has achieved
the theoretically lowest cost, the principal does not benefit from a finer differentiation. In this sub-
section, we derive the condition for such a security bundle to exist and characterize the minimum
number of types required by it.
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For any θ and K, define

V (θ ,K)≡ inf{z|G(z;θ ,K)> 0} .

V (θ ,K) represents the effectively lowest possible project value. For any participation scheme
K
(
θ ;{(Kt ,θt)}T

t=1
)
, define

Ṽt(x)≡V (θt ,x+Kt−1)−Kt−1

and
Ṽ (n)

t (x)≡ Ṽt ◦Ṽt ◦ · · ·Ṽt︸ ︷︷ ︸
n

(x).

Proposition 9. The participation scheme K
(
θ ;{(Kt ,θt)}T

t=1
)

can be implemented by a finite-

type security bundle with zero premium, if and only if Ṽt(x) > x for any t ∈ {1,2, . . . ,T} and

x ∈ [0,Kt −Kt−1). The minimum number of types to achieve zero premium is n∗ = ∑
T
t=1 n∗t where

n∗t ≡ min
{

n|Ṽ (n)
t (0)≥ Kt −Kt−1

}
.

To illustrate the intuition of Proposition 9, we take the types with the lowest cutoff θ1 as an
example and see how n∗1 is determined. Without loss of generality, we assume that this security
bundle contains a tranching structure as in Proposition 6. Suppose the first l types have the cutoff
θ1 and they all have zero premium. Zero premium requires that Fk = ∑

k
i=1 Qi. That means, any

marginal Type-k agents can receive Fk −Fk−1 = Qk in almost all scenarios with positive probabil-
ity. From the perspective of the marginal Type-k agents, at most the first (k− 1) types of agents
participate almost surely, so the worst scenario with positive probability is no better than only mass

∑
k−1
j=1 Q j of agents participating. Therefore,

V

(
θ1,

k−1

∑
j=1

Q j

)
−Fk−1 ≥ TFk

[
V

(
θ1,

k−1

∑
j=1

Q j

)]
−Fk−1 ≥ Qk

⇒ Ṽ1

(
k−1

∑
j=1

Q j

)
>

k

∑
j=1

Q j.

Iterating this inequality, we obtain that ∑
k
j=1 Q j ≤ Ṽ (k)

1 (0). Therefore, Ṽ (k)
1 (0) is the upper bound

of the mass of the first k types of agents if zero premium is required. n∗1 is the minimum number
such that this upper bound exceeds the total mass of the agents with the cutoff θ1.

Figure 3 illustrates one security bundle that achieves zero premium with n∗1 = 3 types. The first
type features mass Ṽ1(0) of agents sharing the senior tranche TV (θ1,0). Upon observing θ1, each of
them can receive

V (θ1,0)
Ṽ1(0)

= 1
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Figure 3: The security bundle achieving zero Premium

almost surely, so they choose to participate irrespective of others’ decisions. The second type
features mass Ṽ (2)

1 (0)− Ṽ1(0) of agents sharing the junior tranche TV (θ1,Ṽ1(0)) − TV (θ1,0). Upon
observing θ1, they know Type-1 agents participate almost surely, so each of them can receive

V (θ1,Ṽ1(0))−V (θ1,0)

Ṽ (2)
1 (0)−Ṽ1(0)

= 1

almost surely. Based on the speculation about Type-1 agents, they choose to participate. The n∗1-th
type features mass K1 −Ṽ (2)

1 (0) of agents sharing the junior tranche TK1 −TV (θ1,Ṽ1(0)). Conditional
on the participation of the first two types of agents, they choose to participate as well.

6.6 Applications

We have formulated our model as a principal motivating agents to participate in a project. There
are various examples that may fit this description. We next discuss some applications.

Corporate finance. In corporate finance, investors’ payoffs are usually linked to the state of
the firm, which is affected by other investors’ contribution. Based on the strategic risk between
investors, a number of papers study debt rollover risk. Our results directly imply that to mitigate
the adverse impact of strategic risk, the firm should differentiate investors by offering different
securities. Some investors have payoffs less sensitive to the state of the firm, so they are not so
concerned about strategic risk and become eager to invest. Their eagerness further reassures other
investors so that other investors would also like to invest despite high sensitivities of their payoffs
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to the state of the firm. Such differentiation can be implemented by a debt-seniority structure or
uneven allocation of collateral among investors.

Financial stability. Strategic risk also undermines the stability of financial systems. A large lit-
erature sheds light on how regulators use policy tools to bolster financial stability. A companion
paper, Dai et al. (2023), studies how to design bank disclosures to achieve this goal. The paper
finds that revealing banks’ heterogeneity may effectively alter banks’ investors’ perception of par-

ticipation and payoff sensitivity to participation. Following similar intuition, the paper concludes
that revealing banks’ heterogeneous vulnerabilities to systemic risk to some extent can make the
whole banking system more robust but revealing banks’ heterogeneous idiosyncratic shortfall of
funds does not. Our model also provides guidance for the use of capital requirement on banks.
Capital requirement increases banks’ resistance to adverse shock but also restricts banks’ ability to
provide welfare-improving services. Given a sufficiently robust banking system, regulators would
prefer to economize on the use of capital requirement. Applying our results to this setting suggests
that heterogeneous capital requirement should be imposed on banks. The investors of the banks
with stricter capital requirement are less concerned about systemic risk, and their confidence in
their banks further bolsters other investors’ confidence in the whole banking system.

Employee compensation. A firm’s performance depends on the effort of all employees. The
design of employee compensation should take into consideration employees’ concern about others’
effort. Different from the existing literature (Segal, 2003; Winter, 2004; Halac et al., 2020), our
results imply that a simple differentiation of employees in terms of high or low rewards is not
helpful; employee compensation should be differentiated with respect to its sensitivity to the firm’s
performance. Roughly, employee compensation consists of three main parts: salary, bonus, and
stock & option. Salary is the least sensitive to the firm’s performance, stock & option is the
most sensitive, and bonus is in the middle. The differentiation with respect to sensitivity can be
implemented by offering different combination of these parts to employees.
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A Additional Lemmas

Lemma 5.

|E [Sk[z]|θ1,K1]−E [Sk[z]|θ2,K2]| ≤ Rk |E [z|θ1,K1]−E [z|θ1,K2]|+Rk |E [z|θ1,K2]−E [z|θ2,K2]| .

Proof. Consider θ1 > θ2. g(z;θ1,K)/g(z;θ2,K) is strictly increasing in z. Let z̃≡ inf{g(z;θ1,K)/g(z;θ2,K)> 1}.

|E [Sk[z]|θ1,K]−E [Sk[z]|θ2,K]|

=

∣∣∣∣∫z>z̃
Sk[z] [g(z;θ1,K)−g(z;θ2,K)]dz−

∫
z<z̃

Sk[z] [g(z;θ2,K)−g(z;θ1,K)]dz
∣∣∣∣

Note that ∫
z>z̃

[g(z;θ1,K)−g(z;θ2,K)]dz =
∫

z<z̃
[g(z;θ2,K)−g(z;θ1,K)]dz.

So,

|E [Sk[z]|θ1,K]−E [Sk[z]|θ2,K]|

=

∫
z1>z̃

∫
z2<z̃ (Sk[z1]−Sk[z2]) [g(z2;θ2,K)−g(z2;θ1,K)] [g(z1;θ1,K)−g(z1;θ2,K)]dz2dz1∫

z2<z̃ [g(z2;θ2,K)−g(z2;θ1,K)]dz2

≤
∫

z1>z̃
∫

z2<z̃ Rk (z1 − z2) [g(z2;θ2,K)−g(z2;θ1,K)] [g(z1;θ1,K)−g(z1;θ2,K)]dz2dz1∫
z2<z̃ [g(z2;θ2,K)−g(z2;θ1,K)]dz2

= |E [Rkz|θ1,K]−E [Rkz|θ2,K]|

≤Rk |E [z|θ1,K]−E [z|θ2,K]| .

Likewise, for K1 > K2,

|E [Sk[z]|θ ,K1]−E [Sk[z]|θ ,K2]| ≤ Rk |E [z|θ ,K1]−E [z|θ ,K2]| .

Then we obtain

|E [Sk[z]|θ1,K1]−E [Sk[z]|θ2,K2]|

= |E [Sk[z]|θ1,K1]−E [Sk[z]|θ1,K2]+E [Sk[z]|θ1,K2]−E [Sk[z]|θ2,K2]|

≤|E [Sk[z]|θ1,K1]−E [Sk[z]|θ1,K2]|+ |E [Sk[z]|θ1,K2]−E [Sk[z]|θ2,K2]|

≤Rk |E [z|θ1,K1]−E [z|θ1,K2]|+Rk |E [z|θ1,K2]−E [z|θ2,K2]| .
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Lemma 6. φ(·) is bounded, and lim|ε|→+∞ φ(ε) = 0.

Proof. Due to SMLRP,

φ(ε +a)
φ(ε +2a)

>
φ(ε)

φ(ε +a)

⇔− logφ(ε +a)<
− logφ(ε)− logφ(ε +2a)

2

which means − logφ(·) is strictly mid-point convex. Since φ(·) is continuous, so is − logφ(·).
According to Jensen (1906), − logφ(·) is strictly convex.

Since
∫+∞

−∞
φ(ε)dε = 1, φ(·) cannot be always increasing or decreasing, so φ(·) must be first

increasing and then decreasing. Therefore, φ(·) is bounded, and lim|ε|→+∞ φ(ε)→ 0.

B Proofs

Proof of Proposition 1

By Equation (7) and Equation (8), we obtain that the total face value is a function of (α,∆), i.e.,

D(α,∆)≡ d1 +d2 = 2c+
1− (c+α)

p1(∆)
+

1− (c−α)

p2(∆)
.

On the one hand, since p1(0) = p2(0), D(α,0) does not change with α for α < min{c,1− c}. On
the other hand, the derivative of D(α,∆) with respect to ∆ at ∆ = 0 is

∂D(α,∆)

∂∆

∣∣∣∣
∆=0

=
P1(x̂)−P0(x̂)

p1(0)2 ·
(

α · d f (∆)
d∆

∣∣∣∣
∆=0

)
+O(σ).

Therefore, for sufficiently small σ , there always exists a positive pair (c,∆) such that

D(α,∆)< D(α,0) = D(0,0).

Proof of Lemma 2

For Type-k agents, the marginal payoff of participating is E [sk[z]|θ ,K]−1. On the one hand,

E [sk[z]|θ ,K]−1 = E [Sk[z]−Sk[0]|θ ,K]/Qk −1 ≤ E [z|θ ,1]Rk/Qk −1.
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The right-hand side converges to −1 as θ goes to −∞, so there exists θ such that E [sk[z]|θ ,K]−1<
0 for θ ≤ θ irrespective of K. On the other hand, for ẑ satisfying sk[ẑ]> 1,

E [sk[z]|θ ,K]−1 ≥ sk[ẑ] [1−G(ẑ;θ ,0)]−1.

The right-hand side converges to sk[ẑ]−1 as θ goes to +∞, so there exists θ such that E [sk[z]|θ ,K]−
1 > 0 for θ ≥ θ irrespective of K.

Proof of Proposition 2

According to the breakeven condition of the marginal Type-k agents, Equation (14), we obtain

∫
∞

−∞

[∫
∞

0
(Sk[z]−Qk)g(z;θ ,Mσ (θ))dz

]
1
σ

φ

(
x̂σ

k −θ

σ

)
h(θ)dθ = 0.

Let mk = 1−Φ

(
x̂σ

k −θ

σ

)
and ∆σ

k, j ≡
(

x̂σ
j − x̂σ

k

)
/σ . Then

Mσ (θ) =
n

∑
j=1

Q j −
n

∑
j=1

Q jΦ
(

Φ
−1(1−mk)+∆

σ
k, j

)
.

The above breakeven condition can rewritten as∫ 1

0

[∫
∞

0
(Sk[z]−Qk)Γ(z;θ ,{∆

σ
k, j}

n
j=1,mk)dz

]
dmk = 0,

where θ = x̂σ
k −σΦ−1(1−mk) and

Γ(z;θ ,{∆
σ
k, j}

n
j=1,mk)≡ g

(
z;θ ,

n

∑
j=1

Q j −
n

∑
j=1

Q jΦ
(

Φ
−1(1−mk)+∆

σ
k, j

))
h(θ).

Part I: There always exists an infinite subsequence {σm}+∞

m=1 converging to 0 such that any{
x̂σm

k

}+∞

m=1 converges to x̂0
k ∈ (−∞,+∞) and any

{
∆

σm
j,k

}+∞

m=1
converges to ∆0

j,k ∈ [−∞,+∞]. More-

over, {(x̂0
k ,∆

0
j,k)} j,k∈{1,2,...,n} satisfy the equation system in Proposition 2.

The existence of such converging sequences is obvious. By Lemma 2, for sufficiently small σm,
x̂σm

k ∈ (θ ,θ), so x̂0
k must be finite. In addition, if x̂0

k > (<)x̂0
k−1,

∆
0
k−1,k = lim

m→∞
∆

σm
k−1,k = lim

m→∞

x̂σm
k − x̂σm

k−1

σm
= lim

m→∞

x̂0
k − x̂0

k−1

σm
=+∞(−∞),
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and

∆
0
j,k = lim

m→∞
∆

σm
j,k = lim

m→∞

k

∑
i= j+1

∆
σm
i−1,i =

k

∑
i= j+1

∆
0
i−1,i.

To confirm the existence of the solution to the equation system in Proposition 2, we will prove

∫ 1

0

[∫
∞

0
(Sk[z]−Qk)Γ(z; x̂0

k ,{∆
0
k, j}

n
j=1,mk)dz

]
dmk = 0.

Step 1 We claim that for any σ and ε > 0, there exists t1 > 0 such that∣∣∣∣∣
∫
|Φ−1(1−mk)|≥t1

[∫
∞

0
(Sk[z]−Qk)Γ(z;θ ,{∆

σ
k, j}

n
j=1,mk)dz

]
dmk

∣∣∣∣∣< ε

and ∣∣∣∣∣
∫
|Φ−1(1−mk)|≥t1

[∫
∞

0
(Sk[z]−Qk)Γ(z; x̂0

k ,{∆
σ
k, j}

n
j=1,mk)dz

]
dmk

∣∣∣∣∣< ε.

Note that ∣∣∣∣∣
∫
|Φ−1(1−mk)|≥t1

[∫
∞

0
(Sk[z]−Qk)Γ(z;θ ,{∆

σ
k, j}

n
j=1,mk)dz

]
dmk

∣∣∣∣∣
≤
∫∣∣∣∣ x̂σ

k −θ

σ

∣∣∣∣≥t1

[∫
∞

0
(Sk[z]+Qk)g(z;θ ,1)h(θ)dz

]
1
σ

sup{φ(·)}dθ

≤ 1
σ

sup{φ(·)}
∫∣∣∣∣ x̂σ

k −θ

σ

∣∣∣∣≥t1
(E [z|θ ,1]+Qk)h(θ)dθ

and ∣∣∣∣∣
∫
|Φ−1(1−mk)|≥t1

[∫
∞

0
(Sk[z]−Qk)Γ(z; x̂0

k ,{∆
σ
k, j}

n
j=1,mk)dz

]
dmk

∣∣∣∣∣
≤
∫∣∣∣∣ x̂σ

k −θ

σ

∣∣∣∣≥t1

[∫
∞

0
(Sk[z]+Qk)g

(
z; x̂0

k ,1
)

h(x̂0
k)dz

]
1
σ

φ

(
x̂σ

k −θ

σ

)
dθ

≤
(
E
[
z|x̂0

k ,1
]
+Qk

)
h(x̂0

k)
∫∣∣∣∣ x̂σ

k −θ

σ

∣∣∣∣≥t1

1
σ

φ

(
x̂σ

k −θ

σ

)
dθ

Since
∫

∞

−∞
(E [z;θ ,1]+Qk)h(θ)dθ and

∫
∞

−∞
1
σ

φ

(
x̂σ

k −θ

σ

)
dθ are both finite, such t1 exists.
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Step 2 We claim that there exists σ such that for any σm < σ ,∣∣∣∣∣
∫
|Φ−1(1−mk)|<t1

∫
∞

0
(Sk[z]−Qk)

[
Γ(z; x̂0

k ,{∆
σm
k, j}

n
j=1,mk)−Γ(z;θ ,{∆

σm
k, j}

n
j=1,mk)

]
dzdmk

∣∣∣∣∣< ε.

Since
∣∣Φ−1(1−mk)

∣∣< t1,
∣∣θ − x̂0

k

∣∣< ∣∣x̂0
k − x̂σm

k

∣∣+σt1 ≡ t2. As σ → 0, t2 → 0. Denote ∑
n
j=1 Q j −

∑
n
j=1 Q jΦ

(
Φ−1(1−mk)+∆

σm
k, j

)
by M.

∣∣∣∣∫ ∞

0
(Sk[z]−Qk)

[
Γ(z; x̂0

k ,{∆
σm
k, j}

n
j=1,mk)−Γ(z;θ ,{∆

σm
k, j}

n
j=1,mk)

]
dz
∣∣∣∣

≤
∣∣∣∣∫ ∞

0
Sk[z]

[
g
(
z; x̂0

k ,M
)
−g(z;θ ,M)

]
dz
∣∣∣∣h(θ)+∫ ∞

0
Sk[z]g

(
z; x̂0

k ,M
)

dz ·
∣∣h(x̂0

k)−h(θ)
∣∣+Qk

∣∣h(x̂0
k)−h(θ)

∣∣
≤
∣∣∣∣∫ ∞

0
Sk[z]

[
g
(
z; x̂0

k ,M
)
−g(z;θ ,M)

]
dz
∣∣∣∣h(θ)+E

[
z|x̂0

k ,1
]
·
∣∣h(x̂0

k)−h(θ)
∣∣+Qk

∣∣h(x̂0
k)−h(θ)

∣∣
For M ≥ λ (x̂0

k − t2), since M ≥ λ (x̂0
k) and M ≥ λ (θ),∣∣∣∣∫ ∞

0
Sk[z]

[
g
(
z; x̂0

k ,M
)
−g(z;θ ,M)

]
dz
∣∣∣∣h(θ) = ∣∣∣∣∫ ∞

0
Sk[z]

[
g1
(
z; x̂0

k ,M
)
−g1 (z;θ ,M)

]
dz
∣∣∣∣h(θ)

≤ RkRt2 · sup{h(·)}.

Similarly, for M < λ (x̂0
k + t2),∣∣∣∣∫ ∞

0
Sk[z]

[
g
(
z; x̂0

k ,M
)
−g(z;θ ,M)

]
dz
∣∣∣∣h(θ) = ∣∣∣∣∫ ∞

0
Sk[z]

[
g0
(
z; x̂0

k ,M
)
−g0 (z;θ ,M)

]
dz
∣∣∣∣h(θ)

≤ RkRt2 · sup{h(·)}.

For λ (x̂0
k + t2)≤ M < λ (x̂0

k − t2)∣∣∣∣∫ ∞

0
Sk[z]

[
g
(
z; x̂0

k ,M
)
−g(z;θ ,M)

]
dz
∣∣∣∣h(θ)

≤
∣∣∣∣∫ ∞

0
Sk[z]

[
g1
(
z; x̂0

k ,M
)
−g0

(
z; x̂0

k ,M
)]

dz
∣∣∣∣h(θ)+RkRt2 ·h(θ)

≤Rk
{

E1
[
z|x̂0

k ,M
]
−E0

[
z|x̂0

k ,M
]}

sup{h(·)}+RkRt2 · sup{h(·)}

Note that h(θ) is continuous in θ . As t2 → 0,
∣∣h(x̂0

k)−h(θ)
∣∣→ 0, RkRt2 · sup{h(·)} → 0, and the

measure of mk satisfying λ (x̂0
k + t2)≤ M < λ (x̂0

k − t2) goes to 0, so our claim holds.
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Step 3 We claim that there exists σ such that for any σm < σ ,∣∣∣∣∣
∫
|Φ−1(1−mk)|<t1

∫
∞

0
(Sk[z]−Qk)

[
Γ(z; x̂0

k ,{∆
σm
k, j}

n
j=1,mk)−Γ(z; x̂0

k ,{∆
0
k, j}

n
j=1,mk)

]
dzdmk

∣∣∣∣∣< ε.

Here we prove that as σm → 0,∣∣∣Φ(Φ
−1(1−mk)+∆

σm
k, j

)
−Φ

(
Φ

−1(1−mk)+∆
0
k, j

)∣∣∣
uniformly converge to 0 for any mk satisfying

∣∣Φ−1(1−mk)
∣∣ < t1. If ∆0

k, j is finite, it follows that

∆
σm
k, j →∆0

k, j and φ(·) is bounded. If ∆0
k, j =+∞, Φ

(
Φ−1(1−mk)+∆0

k, j

)
= 1. Since Φ

(
Φ−1(1−mk)+∆σ

k, j

)
increases to 1 as ∆

σm
k, j →+∞, for any δ > 0, when σm is sufficiently small, ∆

σm
j,k can be large enough

such that for any mk satisfying
∣∣Φ−1(1−mk)

∣∣< t1,

Φ

(
Φ

−1(1−mk)+∆
σm
k, j

)
≥ Φ(−t1 +∆

σm
k, j)> 1−δ .

The case of ∆0
k, j =−∞ follows a similar proof.

Step 4 For σm < σ ,∣∣∣∣∫ 1

0

∫
∞

0
(Sk[z]−Qk)

[
Γ(z; x̂0

k ,{∆
σm
k, j}

n
j=1,mk)−Γ(z;θ ,{∆

σm
k, j}

n
j=1,mk)

]
dzdmk

∣∣∣∣
≤

∣∣∣∣∣
∫
|Φ−1(1−mk)|<t1

∫
∞

0
(Sk[z]−Qk)

[
Γ(z; x̂0

k ,{∆
σm
k, j}

n
j=1,mk)−Γ(z;θ ,{∆

σm
k, j}

n
j=1,mk)

]
dzdmk

∣∣∣∣∣+2ε

≤3ε.

On the other hand,∣∣∣∣∫ 1

0

∫
∞

0
(Sk[z]−Qk)

[
Γ(z; x̂0

k ,{∆
σm
k, j}

n
j=1,mk)−Γ(z; x̂0

k ,{∆
0
k, j}

n
j=1,mk)

]
dzdmk

∣∣∣∣
≤

∣∣∣∣∣
∫
|Φ−1(1−mk)|<t1

∫
∞

0
(Sk[z]−Qk)

[
Γ(z; x̂0

k ,{∆
σm
k, j}

n
j=1,mk)−Γ(z; x̂0

k ,{∆
0
k, j}

n
j=1,mk)

]
dzdmk

∣∣∣∣∣+2ε

<3ε.
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All combined, when m is sufficiently large,∣∣∣∣∫ 1

0

[∫
∞

0
(Sk[z]−Qk)Γ(z; x̂0

k ,{∆
0
k, j}

n
j=1,mk)dz

]
dmk

∣∣∣∣
=

∣∣∣∣∫ 1

0

∫
∞

0
(Sk[z]−Qk)

[
Γ(z; x̂0

k ,{∆
0
k, j}

n
j=1,mk)−Γ(z;θ ,{∆

σm
k, j}

n
j=1,mk)

]
dzdmk

∣∣∣∣
<6ε.

Since ε can be arbitrarily small,

∫ 1

0

[∫
∞

0
(Sk[z]−Qk)Γ(z; x̂0

k ,{∆
0
k, j}

n
j=1,mk)dz

]
dmk = 0.

Let

M =
n

∑
j=1

Q j −
n

∑
j=1

Q jΦ
(

Φ
−1(1−mk)+∆

0
k, j

)
,

which ranges from 0 to ∑
n
j=1 Q j.

dmk

dM
=

φ
(
Φ−1(1−mk)

)
∑

n
j=1 Q jφ

(
Φ−1(1−mk)+∆0

k, j

) = f
(

M;{Q j,∆
0
k, j}

n
j=1

)
.

So, ∫ 1

0

[∫
∞

0
(Sk[z]−Qk)g

(
z; x̂0

k ,M
)

dz
]

f
(

M;{Q j,∆
0
k, j}

n
j=1

)
dM = 0.

We have confirmed the existence of the solution to the equation system.

Part II: There is a unique solution {x̂k}n
k=1 to the equation system.

Suppose {x̂k}n
k=1 and {x̂′k}n

k=1 both satisfy the equation system and they are different in at least one
element. They have {∆k, j} j,k∈{1,...,n} and {∆′

k, j} j,k∈{1,...,n} respectively.
Suppose there are types with x̂′k > x̂k and they constitute the set T = {τ1,τ2, . . . ,τL} where

τ1 < τ2 . . . < τL. Consider k ∈ T . Since

∫ 1

0

[∫
∞

0
(Sk[z]−Qk)Γ(z; x̂′k,{∆

′
k, j}n

j=1,mk)dz
]

dmk
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is strictly decreasing in ∆′
k, j, if ∆′

k, j ≤ ∆k, j for any j, then

∫ 1

0

[∫
∞

0
(Sk[z]−Qk)Γ(z; x̂′k,{∆

′
k, j}n

j=1,mk)dz
]

dmk

>
∫ 1

0

[∫
∞

0
(Sk[z]−Qk)Γ(z; x̂k,{∆k, j}n

j=1,mk)dz
]

dmk ·
h(x̂′k)
h(x̂k)

= 0.

Therefore, ∆′
k, j > ∆k, j for some j. Let a(k) be the first j such that ∆′

k, j > ∆k, j.
First, consider k = τ1. Note that for j /∈T , since x̂′j ≤ x̂ j and x̂′k > x̂k, ∆′

k, j <∆k, j. So, a(τ1)∈T

and a(τ1)> τ1. Second, consider k = a(τ1). Likewise, a(2)(τ1) = a(a(τ1)) must be in T . By the
definition of a(τ1), for any j ∈ T and j < a(τ1), ∆′

τ1, j ≤ ∆τ1, j, and ∆′
τ1,a(τ1)

> ∆τ1,a(τ1). So, for
these j,

∆
′
a(τ1), j = ∆

′
τ1, j −∆

′
τ1,a(τ1)

< ∆τ1, j −∆τ1,a(τ1) = ∆a(τ1), j,

which implies a(a(τ1)) > a(τ1). Iterating the procedure, we end up with an infinite sequence
{a(m)(τ1)}+∞

m=1 in T . This is impossible because T is a finite set.
Therefore, the types with x̂′k > x̂k do not exist; nor do the types with x̂′k < x̂k. The solution is

unique. Note that the solution is the limits {x̂0
k}

n
k=1 in Part I.

Part III: The equation system is the necessary and sufficient condition for {x̂k}n
k=1 to be the

limits of the cutoffs as σ → 0.

Suppose as σ → 0, {x̂σ
k }

n
k=1 do not converge to {x̂0

k}
n
k=1. That means, there exists ε and an infinite

sequence {σm}+∞

m=1 such that maxk
∣∣x̂σm

k − x̂0
k

∣∣ > ε . According to Part I and Part II, there exists
an infinite subsequence {σm}+∞

m=1 of {σm}+∞

m=1 such that {x̂σm
k }n

k=1 converges to {x̂0
k}

n
k=1, which is

impossible. Therefore, as σ → 0, {x̂σ
k }

n
k=1 converge to {x̂0

k}
n
k=1.

Conversely, if {x̂k}n
k=1 satisfy the equation system, when the security bundle {(Sk,Qk)}n

k=1 is
issued, as σ → 0, {x̂σ

k }
n
k=1 must converge to the solution of the equation system, which is uniquely

{x̂k}n
k=1.

Proof of Proposition 3

Property 1

Suppose for M ∈
(

0,∑n
j=1 Q j

)
, γk(M) solves

M =
n

∑
j=1

Q j −
n

∑
j=1

Q jΦ
(
Φ

−1(1− γk(M))+∆k, j
)
.
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Note that γk(0) = 0.

∫ M

0
fk (y)dy =

∫
γk(M)

mk=γk(0)

d(1−mk)/dΦ−1(1−mk)

−d
[
∑

n
j=1 Q j −∑

n
j=1 Q jΦ

(
Φ−1 (1−mk)+∆k, j

)]
/dΦ−1(1−mk)

×d

[
n

∑
j=1

Q j −
n

∑
j=1

Q jΦ
(
Φ

−1 (1−mk)+∆k, j
)]

=
∫

γk(0)

mk=γk(M)
d(1−mk)

=γk(M).

So, Property 1 holds.

Property 2

Since γk(M) is unique for any k and M ∈
(

0,∑n
j=1 Q j

)
, then

Φ
−1(1− γk(M))+∆k, j = Φ

−1(1− γ j(M)).

Therefore,

M =
n

∑
j=1

Q j −
n

∑
j=1

Q jΦ
(
Φ

−1(1− γ j(M))
)

=
n

∑
j=1

Q jγ j(M) =
∫ M

0

n

∑
j=1

Q j f j (y)dy,

Taking derivative with respect to M, we obtain ∑
n
j=1 Q j f j (M) = 1.

Property 3

Note that for j ≤ L(k), ∆k, j =−∞. According to Property 1, if
∫M

0 fk (y)dy > 0,

Φ

(
Φ

−1
(

1−
∫ M

0
fk (y)dy

)
+∆k, j

)
= Φ(−∞) = 0

for j ≤ L(k), and

Φ

(
Φ

−1
(

1−
∫ M

0
fk (y)dy

)
+∆k,k

)
= 1−

∫ M

0
fk (y)dy < 1,
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so M > ∑
L(k)
j=1 Q j . If

∫M
0 fk (y)dy = 0, for j > L(k),

Φ

(
Φ

−1
(

1−
∫ M

0
fk (y)dy

)
+∆k, j

)
= Φ(+∞) = 1,

so M ≤ ∑
L(k)
j=1 Q j. Combing the two arguments, we obtain

∫ M

0
fk (y)dy > 0 ⇔ M >

L(k)

∑
j=1

Q j.

Likewise, we obtain ∫ M

0
fk (y)dy < 1 ⇔ M <

U(k)

∑
j=1

Q j.

For M ∈
(

∑
L(k)
j=1 Q j,∑

U(k)
j=1 Q j

)
,
∫M

0 fk (y)dy ∈ (0,1), Property 1 implies

U(k)

∑
j=1

Q j −
U(k)

∑
j=L(k)+1

Q jΦ

(
Φ

−1
(

1−
∫ M

0
fk (y)dy

)
+∆k, j

)
= M.

Taking derivative with respect to M,

fk(M) =
φ

(
Φ−1

(
1−

∫M
0 fk (y)dy

))
∑

U(k)
j=L(k)+1 Q jφ

(
Φ−1

(
1−

∫M
0 fk (y)dy

)
+∆k, j

) ,
which is positive because ∆k, j here are all finite.

Property 4

For M ∈
(

∑
L(k)
j=1 Q j,∑

U(k)
j=1 Q j

)
,

U(k)

∑
j=1

Q j −
U(k)

∑
j=L(k)+1

Q jΦ

(
Φ

−1
(

1−
∫ M

0
fk (y)dy

)
+∆k, j

)
= M.

It is straightforward to see the left-hand side is strictly increasing in
∫M

0 fk (y)dy and strictly de-
creasing in ∆k,i. So,

∫M
0 fk (y)dy is strictly increasing in ∆k,i.
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Property 5

Consider L(k) < i ≤ U(k). Then L(i) = L(k) and U(i) = U(k). Therefore, fk(M) and fi(M) are
both positive for M ∈

(
∑

L(k)
j=1 Q j,∑

U(k)
j=1 Q j

)
, so their ratio is well defined in the region.

By Φ−1(1− γk(M))+∆k,i = Φ−1(1− γi(M)),

dγi(M) =
φ
(
Φ−1(1− γk(M))+∆k,i

)
φ (Φ−1(1− γk(M)))

dγk(M),

so
fk (M)

fi (M)
=

dγk(M)/dM
dγi(M)/dM

=
φ
(
Φ−1(1− γk(M))

)
φ
(
Φ−1(1− γk(M))+∆k,i

) .
By SMLRP, we obtain Property 5.

Proof of Proposition 4

In the state θ , mass Qkmσ
k (θ) of Type-k agents accept their offers, so the principal’s expected

payoff is
E[πP] =

∫
∞

−∞

Π(mσ
1 (θ),m

σ
2 (θ), . . . ,m

σ
n (θ))h(θ)dθ ,

where

Π(mσ
1 (θ),m

σ
2 (θ), . . . ,m

σ
n (θ))≡

∫ +∞

0

(
z−

n

∑
k=1

mσ
k (θ)Qksk [z]

)
g

(
z;θ ,

n

∑
k=1

Qkmσ
k (θ

)
dz

= E

[
z|θ ,

n

∑
k=1

Qkmσ
k (θ)

]
−

n

∑
k=1

mσ
k (θ)E

[
Sk[z]|θ ,

n

∑
k=1

Qkmσ
k (θ)

]

For any σ and ε > 0, there exists t1 > 0 such that for any θ < x̂σ
k − t1σ ,

mσ
k (θ) = 1−Φ

(
x̂σ

k −θ

σ

)
< 1−Φ(t1)< ε,

and for any θ > x̂σ
k + t1σ ,

mσ
k (θ) = 1−Φ

(
x̂σ

k −θ

σ

)
> 1−Φ(−t1)> 1− ε.

Consider σ that is sufficiently small such that x̂σ
k − t1σ > x̂k −1 and x̂σ

k + t1σ < x̂k +1.
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Consider mσ
1 (θ) and 1{θ > x̂1}. For θ < x̂σ

1 ≡ min{x̂σ
1 − t1σ , x̂1},

Π(mσ
1 (θ),m

σ
2 (θ), . . . ,m

σ
n (θ))

<E

[
z|θ ,Q1ε +

n

∑
k=2

Qkmσ
k (θ)

]
−

n

∑
k=2

mσ
k (θ)E

[
Sk[z]|θ ,

n

∑
k=2

Qkmσ
k (θ)

]
dz

≤Π(0,mσ
2 (θ), . . . ,m

σ
n (θ))+E

[
z|θ ,Q1ε +

n

∑
k=2

Qkmσ
k (θ)

]
−E

[
z|θ ,

n

∑
k=2

Qkmσ
k (θ)

]
,

so ∫ x̂σ
1

−∞

Π(mσ
1 (θ),m

σ
2 (θ), . . . ,m

σ
n (θ))h(θ)dθ −

∫ x̂σ
1

−∞

Π(0,mσ
2 (θ), . . . ,m

σ
n (θ))h(θ)dθ

<
∫ x̂σ

1

−∞

{
E

[
z|θ ,Q1ε +

n

∑
k=2

Qkmσ
k (θ)

]
−E

[
z|θ ,

n

∑
k=2

Qkmσ
k (θ)

]}
h(θ)dθ .

For θ satisfying ∑
n
k=2 Qkmσ

k (θ)−λ (θ)> 0,

E

[
z|θ ,Q1ε +

n

∑
k=2

Qkmσ
k (θ)

]
−E

[
z|θ ,

n

∑
k=2

Qkmσ
k (θ)

]
= E1

[
z|θ ,Q1ε +

n

∑
k=2

Qkmσ
k (θ)

]
−E1

[
z|θ ,

n

∑
k=2

Qkmσ
k (θ)

]
≤ Q1ε.

Similarly, for θ satisfying ∑
n
k=2 Qkmσ

k (θ)−λ (θ)≤−Q1ε ,

E

[
z|θ ,Q1ε +

n

∑
k=2

Qkmσ
k (θ)

]
−E

[
z|θ ,

n

∑
k=2

Qkmσ
k (θ)

]
≤ Q1ε.

For θ satisfying −Q1ε < ∑
n
k=2 Qkmσ

k (θ)−λ (θ)≤ 0,

E

[
z|θ ,Q1ε +

n

∑
k=2

Qkmσ
k (θ)

]
−E

[
z|θ ,

n

∑
k=2

Qkmσ
k (θ)

]

is bounded. Therefore, as ε → 0,

∫ x̂σ
1

−∞

{
E

[
z|θ ,Q1ε +

n

∑
k=2

Qkmσ
k (θ)

]
−E

[
z|θ ,

n

∑
k=2

Qkmσ
k (θ)

]}
h(θ)dθ

can be arbitrarily small.
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On the other hand, for θ < x̂σ
1 ,

Π(mσ
1 (θ),m

σ
2 (θ), . . . ,m

σ
n (θ))

>E

[
z|θ ,

n

∑
k=2

Qkmσ

k (θ)

]
− εE

[
S1 [z] |θ ,Q1ε +

n

∑
k=2

Qkmσ

k (θ)

]
−

n

∑
k=2

mσ

k (θ)E

[
Sk [z] |θ ,Q1ε +

n

∑
k=2

Qkmσ

k (θ)

]

≥Π(0,mσ
2 (θ), . . . ,m

σ
n (θ))− εE [z|θ ,1]−

{
n

∑
k=2

mσ

k (θ)E

[
Sk [z] |θ ,Q1ε +

n

∑
k=2

Qkmσ

k (θ)

]
−

n

∑
k=2

mσ

k (θ)E

[
Sk [z] |θ ,

n

∑
k=2

Qkmσ

k (θ)

]}

≥Π(0,mσ
2 (θ), . . . ,m

σ
n (θ))− εE [z|θ ,1]−

n

∑
k=2

Rk

{
E

[
z|θ ,Q1ε +

n

∑
k=2

Qkmσ

k (θ)

]
−E

[
z|θ ,

n

∑
k=2

Qkmσ

k (θ)

]}
.

Following the same argument, we obtain that as ε → 0,∣∣∣∣∫ x̂σ
1

−∞

Π(mσ
1 (θ),m

σ
2 (θ), . . . ,m

σ
n (θ))h(θ)dθ −

∫ x̂σ
1

−∞

Π(0,mσ
2 (θ), . . . ,m

σ
n (θ))h(θ)dθ

∣∣∣∣
can be arbitrarily small.

Likewise, let x̂σ
1 ≡ max{x̂σ

1 + t1σ , x̂1}. As ε → 0,∣∣∣∣∫ +∞

x̂σ
1

Π(mσ
1 (θ),m

σ
2 (θ), . . . ,m

σ
n (θ))h(θ)dθ −

∫ +∞

x̂σ
1

Π(1{θ > x̂1},mσ
2 (θ), . . . ,m

σ
n (θ))h(θ)dθ

∣∣∣∣
can be arbitrarily small.

For θ ∈ [x̂σ
1 , x̂

σ
1 ]⊆ [x̂1 −1, x̂1 +1],

0 ≤ Π(mσ
1 (θ),m

σ
2 (θ), . . . ,m

σ
n (θ))≤ E

[
z|x̂1 +1,

n

∑
k=1

Qk

]
,

so ∣∣∣∣∣
∫ x̂σ

1

x̂σ
1

Π(mσ
1 (θ),m

σ
2 (θ), . . . ,m

σ
n (θ))h(θ)dθ −

∫ x̂σ
1

x̂σ
1

Π(1{θ > x̂1},mσ
2 (θ), . . . ,m

σ
n (θ))h(θ)dθ

∣∣∣∣∣
≤2E

[
z|x̂1 +1,

n

∑
k=1

Qk

]
sup{h(·)} ·

(
x̂σ

1 − x̂σ
1

)
≤2E

[
z|x̂1 +1,

n

∑
k=1

Qk

]
sup{h(·)} · (|x̂1 − x̂σ

1 |+2t1σ) ,

which converges to 0 as σ → 0.
To sum up, for any δ > 0, there exists σ1 such that for any σ < σ1,∣∣∣∣∫ ∞

−∞

Π(mσ
1 (θ),m

σ
2 (θ), . . . ,m

σ
n (θ))h(θ)dθ −

∫
∞

−∞

Π(1{θ > x̂1},mσ
2 (θ), . . . ,m

σ
n (θ))h(θ)dθ

∣∣∣∣< δ .
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Repeating the analysis on all k ∈ {1,2, . . . ,n}, we obtain as σ → 0,∫
∞

−∞

Π(mσ
1 (θ),m

σ
2 (θ), . . . ,m

σ
n (θ))h(θ)dθ →

∫
∞

−∞

Π(1{θ > x̂1},1{θ > x̂2}, . . . ,1{θ > x̂n})h(θ)dθ .

It is easy to see ∫
∞

−∞

Π(1{θ > x̂1},1{θ > x̂2}, . . . ,1{θ > x̂n})λ (θ)h(θ)dθ

=
n

∑
k=0

∫ x̂k+1

x̂k

[∫ +∞

0

(
z−

k

∑
j=1

Q js j [z]

)
g

(
z;θ ,

k

∑
j=1

Q j

)
dz

]
h(θ)dθ ,

where x̂0 =−∞ and x̂n+1 =+∞.
Next, we show that ∑

n
k=1 Qkmσ

k (θ) converges to ∑
n
k=1 Qk ·1{θ ≥ x̂k} in probability. Consider

mσ
1 (θ) and 1{θ ≥ x̂1}. According to the above construction, for θ /∈ [x̂σ

1 , x̂
σ
1 ],
∣∣mσ

1 (θ)−1{θ ≥ x̂1}
∣∣<

ε , so

Pr [|mσ
1 (θ)−1{θ ≥ x̂1}|> ε]≤ Pr

[
θ ∈ [x̂σ

1 , x̂
σ
1 ]
]
≤ sup{h(·)} · (|x̂1 − x̂σ

1 |+2t1σ) .

That means, Pr
[∣∣mσ

1 (θ)−1{θ ≥ x̂1}
∣∣> ε

]
can be arbitrarily small when σ is sufficiently small.

Similarly, this argument applies to all other k. Therefore,

lim
σ→0

Pr

[∣∣∣∣∣ n

∑
k=1

Qkmσ
k (θ)−

n

∑
k=1

Qk ·1{θ ≥ x̂k}

∣∣∣∣∣> ε

]
= 0.

Proof of Proposition 5

Consider a n-type security bundle that induces multiple cutoffs in the limit case. Suppose that
regime change occurs at θ̂ , i is the last type whose cutoff is smaller than θ̂ , and m is the first type
whose cutoff is larger than θ̂ . The principal’s expected payoff equals

i

∑
k=0

∫ x̂k+1

x̂k

(
E0

[
z | θ ,

k

∑
j=1

Q j

]
−E0

[
k

∑
j=1

S j [z] | θ ,
k

∑
j=1

Q j

])
h(θ)dθ

+
∫ x̂m

θ̂

(
E1

[
z | θ ,

m−1

∑
j=1

Q j

]
−E1

[
k

∑
j=1

S j [z] | θ ,
m−1

∑
j=1

Q j

])
h(θ)dθ

+
n

∑
k=m

∫ x̂k+1

x̂k

(
E1

[
z | θ ,

k

∑
j=1

Q j

]
−E1

[
k

∑
j=1

S j [z] | θ ,
k

∑
j=1

Q j

])
h(θ)dθ .

Consider that the principal does not offer securities to the agents with cutoffs greater than θ̂ .
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All other agents still play the same strategy, and the principal’s expected payoff equals

i

∑
k=0

∫ x̂k+1

x̂k

(
E0

[
z | θ ,

k

∑
j=1

Q j

]
−E0

[
k

∑
j=1

S j [z] | θ ,
k

∑
j=1

Q j

])
h(θ)dθ

+
∫ x̂m

θ̂

(
E1

[
z | θ ,

m−1

∑
j=1

Q j

]
−E1

[
k

∑
j=1

S j [z] | θ ,
m−1

∑
j=1

Q j

])
h(θ)dθ

+
n

∑
k=m

∫ x̂k+1

x̂k

(
E1

[
z | θ ,

m−1

∑
j=1

Q j

]
−E1

[
m−1

∑
j=1

S j [z] | θ ,
m−1

∑
j=1

Q j

])
h(θ)dθ .

Notice that for k ≥ m and θ > x̂k,

E1

[
z | θ ,

k

∑
j=1

Q j

]
−E1

[
z | θ ,

m−1

∑
j=1

Q j

]
≤

k

∑
j=m

Q j

and

E1

[
k

∑
j=1

S j [z] | θ ,
k

∑
j=1

Q j

]
−E1

[
m−1

∑
j=1

S j [z] | θ ,
m−1

∑
j=1

Q j

]

>E1

[
k

∑
j=1

S j [z] | θ ,
k

∑
j=1

Q j

]
−E1

[
m−1

∑
j=1

S j [z] | θ ,
k

∑
j=1

Q j

]

=E1

[
k

∑
j=m

S j [z] | θ ,
k

∑
j=1

Q j

]
>

k

∑
j=m

Q j.

The principal becomes strictly better off.
Further, fixing {Q j,∆k, j}n

j=1, the principal offers the first i types δk · sk[·] such that

∫
∞

0
δk · sk[z]

[∫
∞

0
g
(
z; θ̂ ,M

)
fk (M)dM

]
dz = 1.

All agents have the same cutoff θ̂ , and he principal’s expected payoff equals

∫
∞

θ̂

(
E1

[
z | θ ,

m−1

∑
j=1

Q j

]
−E1

[
i

∑
j=1

δ jS j [z]+
m−1

∑
j=i+1

S j [z] | θ ,
m−1

∑
j=1

Q j

])
h(θ)dθ .

Notice that δk < 1 and for k ≤ i and θ > x̂k,

E0

[
z | θ ,

k

∑
j=1

Q j

]
−E0

[
k

∑
j=1

S j [z] | θ ,
k

∑
j=1

Q j

]
< 0.
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The principal becomes strictly better off.

Proof of Lemma 3

Denote the alternative security bundle as {(S′k,Q′
k)}n

k=1 where

S′k =


Si +Si+1 if k = i

0 if k = i+1
Sk, otherwise

and

Q′
k =


Qi +Qi+1 if k = i

0 if k = i+1
Qk, otherwise

.

(S′i+1,Q
′
i+1) = (0,0) is used only for notational convenience and can be ignored. We only need to

check that the condition in Proposition 2 holds for the alternative security bundle with {x̂k,∆ j,k} j,k∈{1,2,...,n}.
Since ∆i,i+1 = 0, ∆i,k = ∆i+1,k and x̂i = x̂i+1.

f
(
M;{Q′

j,∆k, j}n
j=1
)
=

φ
(
Φ−1(1−mk)

)
∑

n
j=1 Q′

jφ
(
Φ−1(1−mk)+∆k, j

)
=

φ
(
Φ−1(1−mk)

)
∑ j ̸=i, j ̸=i+1 Q jφ

(
Φ−1(1−mk)+∆k, j

)
+(Qi +Qi+1)φ

(
Φ−1(1−mk)+∆k,i

)
=

φ
(
Φ−1(1−mk)

)
∑

n
j=1 Q jφ

(
Φ−1(1−mk)+∆k, j

) ,
where

M =
n

∑
j=1

Q′
j −

n

∑
j=1

Q′
jΦ
(
Φ

−1(1−mk)+∆k, j
)
=

n

∑
j=1

Q j −
n

∑
j=1

Q jΦ
(
Φ

−1(1−mk)+∆k, j
)
.

So,
f
(
M;{Q′

j,∆k, j}n
j=1
)
= f

(
M;{Q j,∆k, j}n

j=1
)
.
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That means, for k other than i or i+1,∫
∞

0
S′k [z]

[∫
∞

0
g(z; x̂k,M) f

(
M;{Q′

j,∆k, j}n
j=1
)

dM
]

dz

=
∫

∞

0
Sk [z]

[∫
∞

0
g(z; x̂k,M) f

(
M;{Q j,∆k, j}n

j=1
)

dM
]

dz

=Qk

For k = i, ∫
∞

0
S′i [z]

[∫
∞

0
g(z; x̂i,M) f

(
M;{Q′

j,∆i, j}n
j=1
)

dM
]

dz

=
∫

∞

0
(Si [z]+Si+1 [z])

[∫
∞

0
g(z; x̂i,M) f

(
M;{Q j,∆i, j}n

j=1
)

dM
]

dz

=Qi +Qi+1

Therefore, for all types, the condition in Proposition 2 holds.
The proof of the converse is similar.

Proof of Lemma 4

Consider W P(z)/W A
k (z).

W P(z)
W A

k (z)
=
∫

∞

θ̂

g(z;θ ,K)∫
∞

0 g
(
z; θ̂ ,M

)
fk (M)dM

h(θ)dθ

=
∫

∞

θ̂

1∫ ∑
U(k)
j=1 Q j

∑
L(k)
j=1 Q j

g(z;θ̂ ,M)
g(z;θ ,K) fk (M)dM

h(θ)dθ .

Since θ̂ < θ and M < K, g
(
z; θ̂ ,M

)
/g(z;θ ,K) is strictly decreasing in z. Therefore W P(z)/W A

k (z)

is strictly increasing in z.
Consider W A

k (z)/W A
k−1(z). If ∆k−1,k =+∞, U(k−1) = L(k).
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W A
k (z)

W A
k−1(z)

=

∫ ∑
U(k)
j=1 Q j

∑
L(k)
j=1 Q j

g
(
z; θ̂ ,M

)
fk (M)dM

∫ ∑
U(k−1)
j=1 Q j

∑
L(k−1)
j=1 Q j

g
(
z; θ̂ ,y

)
fk−1 (y)dy

=
∫

∑
U(k)
j=1 Q j

∑
L(k)
j=1 Q j

fk (M)∫ ∑
U(k−1)
j=1 Q j

∑
L(k−1)
j=1 Q j

g(z;θ̂ ,y)
g(z;θ̂ ,M)

fk−1 (y)dy
dM.

Since M > y, g
(
z; θ̂ ,y

)
/g
(
z; θ̂ ,M

)
is strictly decreasing in z. Therefore, W A

k (z)/W A
k−1(z) is strictly

increasing in z.
If ∆k−1,k <+∞, let

Ω(z,y)≡
∫ y

∑
L(k)
j=1 Q j

g
(
z; θ̂ ,M

)
· fk−1 (M)∫ ∑

U(k)
j=1 Q j

∑
L(k)
j=1 Q j

g
(
z; θ̂ ,M

)
· fk−1 (M)dM

dM.

Ω(z,y) is strictly decreasing in z for any y ∈
(

∑
L(k)
j=1 Q j,∑

U(k)
j=1 Q j

)
because

Ω(z,y) =
1

1+
∫ ∑

U(k)
j=1 Q j

y g(z;θ̂ ,M)· fk−1(M)dM∫ y

∑
L(k)
j=1 Q j

g(z;θ̂ ,M)· fk−1(M)dM

.

W A
k (z)

W A
k−1(z)

=

∫ ∑
U(k)
j=1 Q j

∑
L(k)
j=1 Q j

g
(
z; θ̂ ,y

)
· fk (y)dy

∫ ∑
U(k)
j=1 Q j

∑
L(k)
j=1 Q j

g
(
z; θ̂ ,M

)
· fk−1 (M)dM

=
∫

∑
U(k)
j=1 Q j

∑
L(k)
j=1 Q j

fk (y)
fk−1 (y)

g
(
z; θ̂ ,y

)
fk−1 (y)∫ ∑

U(k)
j=1 Q j

∑
L(k)
j=1 Q j

g
(
z; θ̂ ,M

)
· fk−1 (M)dM

dy

=
∫

∑
U(k)
j=1 Q j

∑
L(k)
j=1 Q j

fk (y)
fk−1 (y)

dΩ(z,y).

By Ω

(
z,∑

L(k)
j=1 Q j

)
= 0 and Ω

(
z,∑

U(k)
j=1 Q j

)
= 1, using integration by parts, we obtain
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W A
k (z)

W A
k−1(z)

=
fk

(
∑

U(k)
j=1 Q j

)
fk−1

(
∑

U(k)
j=1 Q j

) −
∫

∑
U(k)
j=1 Q j

∑
L(k)
j=1 Q j

Ω(z,y)d
[

fk (y)
fk−1 (y)

]
.

By the fifth property in Proposition 3, fk (y)/ fk−1 (y) is strictly increasing in y and Ω(z,y) is strictly
decreasing in z over

(
∑

L(k)
j=1 Q j,∑

U(k)
j=1 Q j

)
. So, W A

k (z)/W A
k−1(z) is strictly increasing in z.

Proof of Proposition 6

In this proof, we always take {(x̂k,Qk,∆k−1,k)}n
k=1 as given and only alter the securities {Sk}n

k=1.
Hence, all agents’ perception of participation stays unchanged. Without loss of generality

First, consider the first two types. The expected payment to Type-1 and Type-2 agents is

∫ +∞

θ̂

E

[
2

∑
k=1

Sk [z] | θ ,K

]
h(θ)dθ

Let S′1[z]≡ min{S1[z]+S2[z],F ′} and S′2[z]≡ S1[z]+S2[z]−S′1[z], where F ′ is the minimum value
such that ∫

∞

0
S′1[z]W

A
1 (z)dz = Q1. (21)

I show ∫
∞

0
S′2[z]W

A
2 (z)dz >

∫
∞

0
S2[z]W A

2 (z)dz.

Since ∫
∞

0
S1[z]W A

1 (z)dz = Q1,

there must exists a minimum z̃ ≥ 0 such that S1[z]−S′1[z] is nonpositive for z ≤ z̃ and nonnegative
for z > z̃. So, ∫ z̃

0

(
S′1[z]−S1[z]

)
W A

1 (z)dz

=
∫ +∞

z̃

(
S1[z]−S′1[z]

)
W A

1 (z)dz.
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Then ∫
∞

0
S′2[z]W

A
2 (z)dz−

∫
∞

0
S2[z]W A

2 (z)dz

=
∫

∞

0

(
S1[z]−S′1[z]

)
W A

2 (z)dz

=
∫ z̃

0

(
S1[z]−S′1[z]

)W A
2 (z)

W A
1 (z)

W A
1 (z)dz+

∫ +∞

z̃

(
S1[z]−S′1[z]

)W A
2 (z)

W A
1 (z)

W A
1 (z)dz.

Since W A
2 (z)/W A

1 (z) is strictly increasing,∫
∞

0
S′2[z]W

A
2 (z)dz−

∫
∞

0
S2[z]W A

2 (z)dz

≥
∫ z̃

0

(
S1[z]−S′1[z]

)W A
2 (z̃)

W A
1 (z̃)

W A
1 (z)dz+

∫ +∞

z̃

(
S1[z]−S′1[z]

)W A
2 (z̃)

W A
1 (z̃)

W A
1 (z)dz

=
W A

2 (z̃)
W A

1 (z̃)

∫ +∞

0

(
S1[z]−S′1[z]

)
W A

1 (z)dz = 0

Next, I show

∫ x̂2

x̂1

[∫ +∞

0
S′1[z]g(z;θ ,K1)dz

]
h(θ)dθ ≤

∫ x̂2

x̂1

[∫ +∞

0
S1[z]g(z;θ ,K1)dz

]
h(θ)dθ .

If x̂1 = x̂2, it is obvious. If x̂1 < x̂2, then x̂1 = θ1 and x̂2 = θ2. The inequality is equivalent to

∫ +∞

0
S′1[z]W

P
1 (z)dz ≤

∫ +∞

0
S1[z]W P

1 (z)dz.

Since W P
1 (z)/W A

1 (z) is strictly increasing, we prove it following the same logic as above.
Let

ρ2 =

∫
∞

0 S′2[z]W
A
2 (z)dz∫

∞

0 S2[z]W A
2 (z)dz

such that ∫
∞

0
ρ2S′2[z]W

A
2 (z)dz = Q2.

Then ρ2 ≤ 1. So, the principal can replace S1 and S2 with S′1 and ρ2S′2 to implement the par-
ticipation scheme. Offering them, the expected payment to Type-1 and Type-2 agents is lower,
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i.e.,

∫ x̂2

x̂1

[∫ +∞

0
S′1[z]g(z;θ ,K1)dz

]
h(θ)dθ +

∫ +∞

x̂2

[∫ +∞

0

(
S′1 +ρ2S′2

)
[z]g(z;θ ,K (θ))dz

]
h(θ)dθ

≤
∫ x̂2

x̂1

[∫ +∞

0
S1[z]g(z;θ ,K1)dz

]
h(θ)dθ +

∫ +∞

x̂2

[∫ +∞

0
(S1 +S2) [z]g(z;θ ,K (θ))dz

]
h(θ)dθ .

Since the expected payment to other types of agents does not change, the total expected payment
is lower.

Second, consider S′1 and S3. Likewise, we construct S′′1 [z] ≡ min{S′1[z] + S3[z],F ′′}, S′3[z] ≡
S′1[z] + S3[z]− S′′1 [z], and ρ3. Following the above analysis, we can show that the total expected
payment is strictly lower if the principal offers S′′1 and ρ3S3 instead of S′1 and S3. If F ′′ > F ′, then
S′′1 [z]≥ S′1[z] for a positive measure of z, so∫

∞

0
S′′1 [z]W

A
1 (z)dz >

∫
∞

0
S′1[z]W

A
1 (z)dz = Q1.

Contradiction! So, F ′′ ≤ F ′ and S′′1 [z] = min{∑
3
k=1 Sk[z],F ′′}. Iterating this procedure with all re-

maining contracts, we end up with S′′′1 [z]≡ min{∑
n
k=1 Sk[z],F ′′′} and a strictly lower total expected

payment.
Third, consider TF1 , where F1 is the minimum value such that∫

∞

0
TF1[z]W

A
1 (z)dz = Q1.

Following the above analysis, we know F1 ≤ F ′′′, so it is feasible to the offer TF1 to Type-1 agents
without changing the contracts to other types. The total expected payment is strictly lower if the
principal offers TF1 to Type-1 agents instead of S′′′1 .

Fourth, given that the first k contracts take the form TFk −TFk−1 where 0 = F0 < F1 < .. . < Fk,
iterating the above three steps on the (k + 1)-th contract, we can show that the total expected
payment is lower if it takes the form TFk+1 − TFk where Fk+1 > Fk. Finally, we end up with a
tranching structure. Moreover, from the above proof, we can see that if such a tranching structure
has a strictly lower total expected payment than any other security bundle does.

Proof of Proposition 7

Part I: constructing an alternative security bundle

Suppose that Proposition 7 does not hold. That means, there exists an optimal security bundle with
n types (n < N). We pick the first one of them and split it into two types in the way described in
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Lemma 3 such that all agents use the same strategy as before. Note that this (n+1)-type security
bundle should also be the optimal. Denote it as {(S j,Q j)}n+1

j=1 and its resultant equilibrium as
{(x̂ j,∆ j−1, j)}n+1

j=1 . In the rest of the proof, {(S j,Q j)}n+1
j=1 is referred to as the original security

bundle. We intend to show that the original security bundle cannot be the optimal. To this end, it
is without loss of generality to assume that this security bundle contains a tranching structure as in
Proposition 6. So, S j = TFj −TFj−1 where 0 = F0 < F1 < .. . < Fn+1.

Since the first type and the second type are the two created by the split, x̂1 = x̂2, ∆1,2 = 0,
L(1) = L(2) = 0, and U(1) =U(2). Keeping all x̂ j unchanged, consider an alternative equilibrium
{(x̂ j,∆

′
j−1, j)}

n+1
j=1 where η ∈ [0,+∞) and

∆
′
j−1, j =


+∞, if j = 1

∆1,2 +η , if j = 2
∆ j−1, j, if j ≥ 3

.

It is easy to see that this equilibrium satisfies Equation (15). Then ∀k ̸= 1,

∆
′
k, j =

{
∆k, j, if j ̸= 1

∆k,1 −η , if j = 1
,

and

∆
′
1, j =

{
∆1, j +η , if j ̸= 1

0, if j = 1
.

Since η is finite, L( j) and U( j) remain the same for all j in the alternative equilibrium. Keeping
all Q j unchanged, consider an alternative security bundle {(S′j,Q j)}n+1

j=1 .

S′j =


TF ′

1
, if j = 1

TF ′
2
−TF ′

1
, if j = 2

ρ jS j, if j ≥ 3

.

We claim that if {(S′j,Q j)}n+1
j=1 results in the equilibrium {(x̂ j,∆

′
j−1, j)}

n+1
j=1 , all ρ j must be

weakly smaller than 1. Since {(S j,Q j)}n+1
j=1 results in {(x̂ j,∆ j−1, j)}n+1

j=1 , by the breakeven con-
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dition of the marginal Type-k agents Equation (16), we obtain

∫
∞

0
Sk[z]

[∫
∞

0
g(z; x̂k,M) f

(
M;{Q j,∆k, j}n+1

j=1

)
dM
]

dz = Qk

⇔
∫

∞

0
Sk[z]

{∫
∑

U(k)
j=1 Q j

M=∑
L(k)
j=1 Q j

g(z; x̂k,M)d
[∫ M

0
f
(

y;{Q j,∆k, j}n+1
j=1

)
dy
]}

dz = Qk

⇔
∫

∞

0
Sk[z]

{
g

(
z; x̂k,

U(k)

∑
j=1

Q j

)
−
∫

∑
U(k)
j=1 Q j

M=∑
L(k)
j=1 Q j

[∫ M

0
f
(

y;{Q j,∆k, j}n+1
j=1

)
dy
]

dg(z; x̂k,M)

}
dz = Qk

Consider {(S′j,Q j)}n+1
j=1 that results in {(x̂ j,∆

′
j−1, j)}

n+1
j=1 . For k ≥ 3, the breakeven condition of the

marginal Type-k agents implies

ρk

∫
∞

0
Sk[z]

{
g

(
z; x̂k,

U(k)

∑
j=1

Q j

)
−
∫

∑
U(k)
j=1 Q j

M=∑
L(k)
j=1 Q j

[∫ M

0
f
(

y;{Q j,∆
′
k, j}n+1

j=1

)
dy
]

dg(z; x̂k,M)

}
dz = Qk.

Since
∫M

0 f
(

y;{Q j,∆k, j}n+1
j=1

)
dy is weakly increasing in ∆k, j and

∆
′
k, j =

{
∆k, j, if j ̸= 1

∆k,1 −η , if j = 1
,

∫
∑

U(k)
j=1 Q j

M=∑
L(k)
j=1 Q j

[∫ M

0
f
(

y;{Q j,∆
′
k, j}n+1

j=1

)
dy
]

dg(z; x̂k,M)

≤
∫

∑
U(k)
j=1 Q j

M=∑
L(k)
j=1 Q j

[∫ M

0
f
(

y;{Q j,∆k, j}n+1
j=1

)
dy
]

dg(z; x̂k,M) ,

So ρk ≤ 1.
If there exists a bundle that can result in the equilibrium {(x̂ j,∆

′
j−1, j)}

n+1
j=1 with F ′

2 strictly
smaller than F2, then this bundle can implement the participation scheme at a strictly lower cost
than the original optimal one. In the second part of the proof, we focus on F ′

1 and F ′
2.

Part II: there exists positive Q1 and η such that F ′
2 < F2.

Note that the original bundle is created by splitting the first type of the optimal contract into two.
This implies that Q1 +Q2 and all Qk for k ≥ 3 are fixed. So is ∑

U(1)
j=1 Q j. Hence, we have two

choice variables, Q1 and η , for constructing the alternative bundle. We denote the PPs of the first
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types as f1(M;Q1,η) and f2(M;Q1,η) respectively. Particularly, at η = 0,

f1(M;Q1,0) = f2(M;Q1,0) = f
(

M;{Q j,∆k, j}n+1
j=1

)
does not vary with Q1, which follows Lemma 3.

According to the breakeven condition of the marginal Type-1 agents Equation (16), we have

Q1 =
∫ F ′

1

0
(z−F0)

[∫
∑

U(1)
j=1 Q j

0
g(z; x̂1,M) f1 (M;Q1,η)dM

]
·dz

+
∫ +∞

F ′
1

(
F ′

1 −F0
)[∫ ∑

U(1)
j=1 Q j

0
g(z; x̂1,M) f1 (M;Q1,η)dM

]
·dz. (22)

Note that at η = 0, F ′
1 = F1. Holding Q1 fixed and taking derivative of the breakeven condition at

η = 0, we obtain

dF ′
1

dη

[
1−

∫
∑

U(1)
j=1 Q j

0
G(F1; x̂1,M) f1 (M;Q1,0)dM

]

=−
∫

∑
U(1)
j=1 Q j

M=0

d
∫M

0 f1 (y;Q1,0)dy
dη

·d
[∫ F1

0
G(z; x̂1,M)dz

]
.

Likewise, for the marginal Type-2 agents,

Q2 =
∫ F ′

2

F ′
1

(
z−F ′

1
)[∫ ∑

U(1)
j=1 Q j

0
g(z; x̂1,M) f2 (M;Q1,η)dM

]
·dz

+
∫ +∞

F ′
2

(
F ′

2 −F ′
1
)[∫ ∑

U(1)
j=1 Q j

0
g(z; x̂1,M) f2 (M;Q1,η)dM

]
·dz.

Note that at η = 0, F ′
2 = F2, and f1(M;Q1,0) = f2(M;Q1,0). Holding Q2 fixed and taking deriva-

tive of the breakeven condition at η = 0, we obtain

dF ′
2

dη

[
1−

∫
∑

U(1)
j=1 Q j

0
G(F2; x̂1,M) f1 (M;Q1,0)dM

]

=
dF ′

1
dη

[
1−

∫
∑

U(1)
j=1 Q j

0
G(F1; x̂1,M) f1 (M;Q1,0)dM

]
−
∫

∑
U(1)
j=1 Q j

M=0

d
∫M

0 f2 (y;Q1,0)dy
dη

·d
[∫ F2

F1

G(z; x̂1,M)dz
]

=−
∫

∑
U(1)
j=1 Q j

M=0

d
∫M

0 f1 (y;Q1,0)dy
dη

·d
[∫ F1

0
G(z; x̂1,M)dz

]
+
∫

∑
U(1)
j=1 Q j

M=0

d
∫M

0 f2 (y;Q1,0)dy
dη

·d
[∫ F2

F1

G(z; x̂1,M)dz
]
.
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To quantify d
∫M

0 f1 (y;Q1,0)dy/dη , we resort to the first property in Proposition 3 and obtain

n+1

∑
j=1

Q j−
n+1

∑
j=2

Q jΦ

(
Φ

−1
(

1−
∫ M

0
f1 (y;Q1,0)dy

)
+∆1, j +η

)
−Q1

(
1−

∫ M

0
f1 (y;Q1,0)dy

)
=M

and

n+1

∑
j=1

Q j −
n+1

∑
j=2

Q jΦ

(
Φ

−1
(

1−
∫ M

0
f2 (y;Q1,0)dy

)
+∆2, j

)
−Q1Φ

(
Φ

−1
(

1−
∫ M

0
f2 (y;Q1,0)dy

)
+∆2,1 −η

)
= M.

Taking derivative with respect to η at η = 0, we haven+1

∑
j=3

Q j

φ

(
Φ−1

(
1−

∫M
0 f1 (y;Q1,0)dy

)
+∆1, j

)
φ

(
Φ−1

(
1−

∫M
0 f1 (y;Q1,0)dy

)) +Q1 +Q2

 d
∫M

0 f1 (y;Q1,0)dy
dη

=
n+1

∑
j=2

Q jφ

(
Φ

−1
(

1−
∫ M

0
f1 (y;Q1,0)dy

)
+∆1, j

)
> 0

and n+1

∑
j=3

Q j

φ

(
Φ−1

(
1−

∫M
0 f1 (y;Q1,0)dy

)
+∆1, j

)
φ

(
Φ−1

(
1−

∫M
0 f1 (y;Q1,0)dy

)) +Q1 +Q2

 d
∫M

0 f2 (y;Q1,0)dy
dη

1
Q1

=−φ

(
Φ

−1
(

1−
∫ M

0
f1 (y;Q1,0)dy

))
< 0.

Here we use ∆1,2 = 0 and thus
∫M

0 f1 (y;Q1,0)dy =
∫M

0 f2 (y;Q1,0)dy at η = 0.
We claim that there exists Q1 such that dF ′

2/dη < 0. According to 22, it is easy to see that at
η = 0, F1 goes to 0 as Q1 goes to 0, and

dQ1 = dF1

[
1−

∫
∑

U(1)
j=1 Q j

0
G(F1; x̂1,M) f1 (M;Q1,0)dM

]
.

By L’Hospital’s rule,

lim
Q1→0

F1

Q1
= lim

Q1→0

dF1

dQ1
= lim

F1→0

1

1−
∫ ∑

U(1)
j=1 Q j

0 G(F1; x̂1,M) f1 (M;Q1,0)dM
= 1.
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Since
∫M

0 f1 (y;Q1,0)dy does not vary with Q1, so is d
∫M

0 f2(y;Q1,0)dy
dη

1
Q1

. Since G(z; x̂1,M) is de-
creasing in M for any z,

lim
Q1→0

1
Q1

∫
∑

U(1)
j=1 Q j

M=0

d
∫M

0 f2 (y;Q1,0)dy
dη

·d
[∫ F2

F1

G(z; x̂1,M)dz
]

=
∫

∑
U(1)
j=1 Q j

M=0

d
∫M

0 f2 (y;Q1,0)dy
dη

1
Q1

·d
[∫ F2

0
G(z; x̂1,M)dz

]
>0.

We only need to show that

lim
Q1→0

1
Q1

∫
∑

U(1)
j=1 Q j

M=0

d
∫M

0 f1 (y;Q1,0)dy
dη

·d
[∫ F1

0
G(z; x̂1,M)dz

]
= 0.

Consider M(F) such that
G(F ; x̂1,M(F)) = M(F).

It is straightforward to see that M(F) is strictly increasing in F . Since G(0; x̂1,M) = 0 for any M,
limF→0 M(F) = 0. Note that

d
∫M

0 f1 (y;Q1,0)dy
dη

≤
∑

n+1
j=2 Q jφ

(
Φ−1

(
1−

∫M
0 f1 (y;Q1,0)dy

)
+∆1, j

)
Q1 +Q2

.

According to Lemma 6, φ(·) is bounded, and

lim
M→0

φ

(
Φ

−1
(

1−
∫ M

0
f1 (y;Q1,0)dy

)
+∆1, j

)
= lim

ε→+∞
φ(ε) = 0.

Therefore, for any M, there exists finite χ(M) such that d
∫M

0 f1 (y;Q1,0)dy/dη < χ(M) for any
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M ∈ [0,M] and χ(M) converges 0 as M goes to 0. Then∣∣∣∣∣ 1
Q1

∫
∑

U(1)
j=1 Q j

M=0

d
∫M

0 f1 (y;Q1,0)dy
dη

·d
[∫ F1

0
G(z; x̂1,M)dz

]∣∣∣∣∣
≤

∣∣∣∣∣ 1
Q1

∫ M(F1)

M=0

d
∫M

0 f1 (y;Q1,0)dy
dη

·d
[∫ F1

0
G(z; x̂1,M)dz

]∣∣∣∣∣+
∣∣∣∣∣ 1
Q1

∫
∑

U(1)
j=1 Q j

M=M(F1)

d
∫M

0 f1 (y;Q1,0)dy
dη

·d
[∫ F1

0
G(z; x̂1,M)dz

]∣∣∣∣∣
≤
∣∣∣∣ 1
Q1

∫ M(F1)

M=0
χ (M(F1)) ·d

[∫ F1

0
G(z; x̂1,M)dz

]∣∣∣∣+
∣∣∣∣∣ 1
Q1

∫
∑

U(1)
j=1 Q j

M=M(F1)
χ

(
U(1)

∑
j=1

Q j

)
·d
[∫ F1

0
G(z; x̂1,M)dz

]∣∣∣∣∣
≤χ (M(F1))

Q1

∣∣∣∣∫ F1

0
G(z; x̂1,0)dz−

∫ F1

0
G(z; x̂1,M(F1))dz

∣∣∣∣
+

χ

(
∑

U(1)
j=1 Q j

)
Q1

∣∣∣∣∣
∫ F1

0
G(z; x̂1,M(F1))dz−

∫ F1

0
G

(
z; x̂1,

U(1)

∑
j=1

Q j

)
dz

∣∣∣∣∣
≤χ (M(F1))

Q1

∣∣∣∣∫ F1

0
G(z; x̂1,0)dz

∣∣∣∣+ χ

(
∑

U(1)
j=1 Q j

)
Q1

∣∣∣∣∫ F1

0
G(z; x̂1,M(F1))dz

∣∣∣∣
≤ F1

Q1
χ (M(F1))+

F1

Q1
χ

(
U(1)

∑
j=1

Q j

)
G(F1; x̂1,M(F1))

=
F1

Q1
χ (M(F1))+

F1

Q1
χ

(
U(1)

∑
j=1

Q j

)
M(F1).

As Q1 → 0, F1/Q1 → 1 and F1 → 0, so M(F1)→ 0. We obtain

1
Q1

∫
∑

U(1)
j=1 Q j

M=0

d
∫M

0 f1 (y;Q1,0)dy
dη

·d
[∫ F1

0
G(z; x̂1,M)dz

]
→ 0.

We confirm that there exists Q1 such that dF ′
2/dη < 0.

To sum up, we prove that there exists positive Q1 and η such that F ′
2 < F2. With such Q1 and

η , {(S′j,Q j)}n+1
j=1 implements the same participation scheme as {(S j,Q j)}n+1

j=1 but its total expected
payment to the agents is strictly lower. Hence, {(S j,Q j)}n+1

j=1 cannot be optimal, and the optimal
security bundle must have N types.

Proof of Proposition 8

It is not hard to see that Proposition 5 holds even if the principal can only offer collinear securities.
Without loss of generality, suppose the firm offers {(Qksk,Qk)}n

k=1 and all types of agents have the
same cutoff θ̂ . Then according to Proposition 2,

∫
∞

0
s[z]
[∫

∞

0
g
(
z; θ̂ ,M

)
fk (M)dM

]
dz = pk.
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Multiplying by Qk and summing over k from 1 to n,

∫
∞

0
s[z]

[∫
∞

0
g
(
z; θ̂ ,M

) n

∑
k=1

Qk fk (M)dM

]
dz =

n

∑
k=1

Qk pk.

According to the second property and the third property in Proposition 3, ∑
n
k=1 Qk fk (M) = 1 for

M ∈ (0,∑n
k=1 Qk), so

∫
∞

0
s[z]
[∫

∑
n
k=1 Qk

0
g
(
z; θ̂ ,M

)
dM
]

dz =
n

∑
k=1

Qk pk.

Note that the aggregate security is

S[·] =
n

∑
k=1

Qk

pk
s[·].

Then ∫
∞

0
S[z]
[∫

∑
n
k=1 Qk

0
g
(
z; θ̂ ,M

)
dM
]

dz =
n

∑
k=1

Qk

pk
·

n

∑
k=1

Qk pk.

Let

δ =
(∑n

k=1 Qk)
2

∑
n
k=1

Qk
pk
·∑n

k=1 Qk pk
.

When pk are not all equal, by Cauchy-Schwarz Inequality,

n

∑
k=1

Qk

pk
·

n

∑
k=1

Qk pk >

(
n

∑
k=1

Qk

)2

,

so δ < 1. Consider that the principal offers δ/∑
n
k=1 Qk ·S[·] to each agent instead. Then

∫
∞

0
δ/

n

∑
k=1

Qk ·S[z]
[∫

∑
n
k=1 Qk

0
g
(
z; θ̂ ,M

) 1
∑

n
k=1 Qk

dM
]

dz = 1.

In this case, all these agents have the same perception of participation, which is a uniform distri-
bution over (0,∑n

k=1 Qk). Hence, their breakeven conditions are satisfied at θ̂ . That means, this
alternative security bundle can induce the same mass of agents to have the same common cutoff
but at a strictly lower expected cost. Proposition 8 is proved.
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Proof of Proposition 9

Part I: Ṽt(x)> x is a necessary condition for zero premium.

Suppose K
(
θ ;{(Kt ,θt)}T

t=1
)

can be implemented by a finite-type security bundle with zero pre-
mium and there exist t̂ ∈ {1,2, . . . ,T} and x̂ ∈ [0,Kt̂ −Kt̂−1) such that Ṽt̂(x̂)≤ x̂, i.e.,

V (θt̂ , x̂+Kt̂−1)≤ x̂+Kt̂−1

Suppose the security bundle is {(Sk,Qk)}n
k=1. Consider the k-th type with the cutoff θt̂ such

that ∑
k−1
j=1 Q j ≤ x̂+Kt̂−1 < ∑

k
j=1 Q j. On the one hand, because of zero premium,

V

(
θt̂ ,

L(k)

∑
j=1

Q j

)
≥

k

∑
j=1

Q j.

.On the other hand, since L(k)≤ k−1 and Ṽt(x) is increasing in x,

V

(
θt̂ ,

L(k)

∑
j=1

Q j

)
≤V

(
θt̂ ,

k−1

∑
j=1

Q j

)
≤V (θt̂ , x̂+Kt−1)≤ x̂+Kt̂−1.

So,
k

∑
j=1

Q j ≤= x̂+Kt̂−1.

Contradiction! Therefore, such t̂ and x̂ cannot exist.

Part II: Ṽt(x) > x is a sufficient condition for the participation scheme to have an n∗-type
security bundle achieving zero premium.

Suppose that Ṽt(x)> x for any t ∈ {1,2, . . . ,T} and x ∈ (0,Kt −Kt−1).
First, we prove the existence of n∗t . Suppose not. Then Ṽ (n)

t (0) < Kt −Kt−1 for any n. Since
Ṽt(x)/x is continuous over [Ṽt(0),Kt −Kt−1], there exists x ∈ [Ṽt(0),Kt −Kt−1] such that Ṽt(x)/x ≥
Ṽt(x)/x. Notice

Ṽ (n)
t (0)

Kt −Kt−1
=

Ṽt(0)
Kt −Kt−1

n

∏
k=2

Ṽt

(
Ṽ (k−1)

t (0)
)

Ṽ (k−1)
t (0)

and Ṽ (k−1)
t (0) ∈ [Ṽt(0),Kt −Kt−1]. So,

Ṽ (n)
t (0)

Kt −Kt−1
≥ Ṽt(0)

Kt −Kt−1

[
Ṽt (x)

x

]n−1

.
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Since Ṽt(x)/x > 1, when n is sufficiently large, Ṽ (n)
t (0)> Kt −Kt−1. Contradiction!

Second, we construct an n∗-type security bundle achieving zero premium. For the cutoff θt , the
n∗t contracts are represented by

{(
Sk+∑

t−1
i=1 n∗i

,Qk+∑
t−1
i=1 n∗i

)}n∗t

k=1

where for k < n∗i

Sk+∑
t−1
i=1 n∗i

= T
Ṽ (k)

t (0)+Kt−1
−T

Ṽ (k−1)
t (0)+Kt−1

Qk+∑
t−1
i=1 n∗i

= Ṽ (k)
t (0)−Ṽ (k−1)

t (0),

and

S
∑

t
i=1 n∗i

= TKt −T
Ṽ
(n∗t −1)

t (0)+Kt−1

Q
∑

t
i=1 n∗i

= Kt −Kt−1 −Ṽ (n∗t −1)
t (0).

It is straightforward to see this n∗-type security bundle can implement the participation scheme
with zero premium and all ∆k−1,k being +∞.

Part III: any security bundle with fewer than n∗ types cannot achieve zero premium.

Suppose {(Sk,Qk)}n
k=1 with ∆k−1,k > 0 can achieve zero premium and there are l types with the

cutoff θl: τ + 1,τ + 2, . . . ,τ + l. According to Proposition 6, it is without loss of generality to
assume Sk ≡ TFk −TFk−1 . Because of zero premium,

τ+k

∑
j=τ+1

Q j ≤V

(
θt ,

τ+k−1

∑
j=τ+1

Q j +Kt−1

)
−Kt−1

= Ṽt

(
τ+k−1

∑
j=τ+1

Q j

)
.

Since Ṽt(x) is increasing in x,

Kt −Kt−1 =
τ+l

∑
j=τ+1

Q j ≤ Ṽt

(
τ+l−1

∑
j=τ+1

Q j

)
≤ Ṽt

(
Ṽt

(
τ+l−2

∑
j=τ+1

Q j

))
= Ṽ (l)

i (0).

By the definition of n∗i , l ≥ n∗i . Therefore, to achieve zero premium, the whole bundle must have
at least n∗ types.
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